-
s

Session 409

WebObjects and Security

David Neumann
System Engineer

Introduction

= Security Concepts
= Coding technigues

= Discussion of a new security kit for WebObjects

— WOSecurityKit including frameworks, WOAdaptors,
and a demo

= B2B applications

What Is Security

= Secrecy
— The focus of this talk
= |ntegrity
— Some detalil
= Availability
— Not covered: things like DoS

Outline

= Cryptography

= Authentication Techniques
= Access Control In EOs

= |ntegrity of Transactions

Cryptography

Cryptography

= Crypto Primer

— Secret Key Crypto

= You share a single secret,
a different secret with each user

— Public Key Crypto

= You share a public secret with all users,
but keep a private secret only you know

Secret Key Crypto

The Secure Channel Problem

Share secret ‘."’?

Customer Bill 4_*»:,_ Acme Corp

¥ Encrypt Data w/ secret ¥
—

= You encrypt data for a secure channel

= But to get a secure channel you must
exchange a secret

= 50 you need a secure channel to get
a secure channel

Secret Key Crypto
The Key Distribution Problem

‘?ﬁ Share Secrets
&
&
&

Customers

= Sharing the secret must be done carefully
— Meeting face-to-face at a ‘registration authority’

= Acme has to do It (differently with different key)
for every Customer

— The same secret shared by all isn’t much of a secret

Public Key Crypto

No Secure Channel Problem

Share Public Key

Customer Bill D

Acme Corp

=
=

& Encrypt Data w/ Pub Key

= You encrypt data with public key
= Key can be shared in the clear

= Only private key can read the data
— Public key cannot decrypt what it encrypts

Public Key Crypto

No More Key Distribution Problem (Almost)
&

Share Public Key) g
¥ Acme Corp
¥
¥

Customers

&

= You can publish the same non-secret to world
— No special meetings

= Every customer can use the same key
= Still two loopholes

Public Key Crypto Loophole #1

= (Q: How do you know that the key for Acme Is
for the real Acme?

= A: You don’t—unless you have some credentials
that say so

« Solution:

— Atrusted third-party that assures Acme is Acme by issuing
an 1D binding Acme’s public key to its address, name, D&B
number, etc.

— DoT issues driver’s license; Certificate Authority issues
digital ID—Both require a registration process

= The more involved this process, the better the ID

Questions

nat Is a secure hash?

nat Is a digital signature?

ow do you know which CAs to trust?

ow can you tell a fake ID from a real one?

ow can | get an ID for encrypting a message?
= What Is the second public key crypto loophole?

Sl

= SSL is an implementation of public key
crypto on the web

— Acme.com’s web server presents its Digital ID

— Your browser checks that the ID Is issued by a
trusted CA

— Your browser encrypts a random secret key to the
server using the server’s public key

— Browser and server exchange further info
encrypted using secret key crypto

Using SSL in WebObjects

= You don’t have to lift a finger in some cases

— A sysadmin however will need to:

= Get a digital ID (server certificate) from a CA like VeriSign,
Entrust.net, etc.

= Configure web site to use it
— For test ID: http://digitalid.verisign.com/server/trial/index.html

= WOApp has to run behind a web server such
as Apache, IPlanet/Netscape, or IS

= Resources are accessed using https:// instead of http://
— Doesn’t that sound easy?

Using SSL in WebObjects

= WebObjects generates partial URLs by default

/cgi-bin/WebObjects/App.woa/wo/FOOOOOEXSA/1.2

= |f you access site over secure URL, this link will be secure

= To force SSL you need to
— Access your app from a secure link, or

— Force WebObjects to generate full URLS
https://wosite.com/cgi-bin/WebObjects/App.woa/wo/FOOO00EXSA/1.2

Forcing Access over SSL

= Use private Obj-C API to force full URLs

http://til.info.apple.com/techinfo.nsf/arthum/n70101

= Create custom WOHyperlink and WOForm
Implementaions

= Use a redirect technique
— Method used in the Technotes in the WOInfoCenter

— Method lets you use normal elements and doesn’t
require private API

SSL URLs via Custom Component

HyperlinkContainer: WOGenericContainer {
elementName ="a";

InvokeAction =
href = href; }

Naction;

= ‘action’ Is the method on your page to invoke

« ‘href’ Is the actual

= See WXHyperlink
— Use method like t

URL WebObjects generates
or a starting point

nis for href in your version:

public String href(){

return “

1 +

context().componentActionURL(); }

SSL using Redirect—Introduce WebObjects AuthPolicy

Encrypting Programmatically

= Why? Some stuff should be secret
— Passwords, credit card numbers, personal data. ..
e How?

— Buy a crypto lib such as BSAFE
(C-lib) and JSAFE (Java lib) from RSA

— Download a free lib such as SSLeay, Intel’s CDSA,
Microsoft’s CyptoLib

Encryption Techniques

e Explicit

y Ca

e Implicit

y er

| crypto functions
crypt/decrypt

— Use custom accessor methods:
= Encrypt in setMethods
= Decrypt in getMethods
— For performance
= cache on get
= Reset cache on set

Encryption Questions

= What key size?

= Does my data get less secure
as computing power increases?

Authentication Techniques

How to Login

= There are two logical, and two physical aspects
— Logical
= Are you whom you claim to be?
= Do you have access?
— Physical
= Gathering credentials (presentation specific)
= Processing credentials (business policy specific)

When to

= No pages al

Login

owed unless logged In

< Allow surfir

— Show link
nrotected

nrotected

g until login required

to login, and re-navigate to
page

Prompt for login then immediately access

page

= Prompt for login on WOSession timeout

When to Login

= Access Posture
— Default to allow/deny all pages?
— Default to allow/deny all DirectActions?
— Must access all pages in private (over SSL)?
— Exceptions if any to the default posture?

Login Panels

= Simple, right?
— Many ways to gather username/password
< HTML page, HTTP login panel, Certificate, Cookie
— Many ways to verify credentials
=RDBMS? LDAP? File? ERP App?
— WOAuthPolicy provides

= Three presentation styles
= Delegation hooks for custom verification business logic

.
J_,.-Hl-—-r

Sessionless Login

= Benefits
— Allows login page to be bookmarked
— No “session expired” on login!
— Less resource Impact on you (sessions can be heavyweight)

= For HTML page, use WOForm and DirectAction

Sessionless Login

« Use the DirectAction action handler as the “default
action handler”

= Force WebODbjects to goto your LoginPage page instead
of Main

= |n your LoginPage, do not call session() anywhere

— This goes for any subcomponents or sub-subcomponents
used on your LoginPage

— Be wary of session.foo bindings in any wod files

Sessionless Login

= |n your DirectAction subclass of
WODirectAction, override defaultAction

public WOActionResults defaultAction() {
return pageWithName(“LoginPage”); }

= |n your Application subclass of WOApplication,
enter this line into the constructor

setDefaultRequestHandler(
requestHandlerForKey(
WOApplication.directActionRequestHandlerKey()

));

HTML Login Page

Using HTTP Challenge Panel

= Really tricky to do in WebObjects...
— See the technote in the WOInfoCenter for details

— Your WOResponse must emit certain statuses
and headers, and look for certain headers
In WORequests

— Your web server might not work
— You have to parse Base64 encoded data

Using HTTP Challenge Panel

= Getting Browser to prompt the panel

aResponse.setStatus(401);
aResponse.setHeader(“Basic realm=\"" +
aRealm + “\"” "WWW-Authenticate”);

= To Interpret the response you need to look for a
header in the WORequest named “authorization”

= Your web server must use an interface that passes this
header to the WOAdaptor

— CGI with Netscape does not
— NSAPI does

Using HTTP Challenge Panel

= To decode the authorization header,
use the JDK’s Base64 support

decoder = new sun.misc.BASE64Decoder();

= Once you have a normal character string, you
can parse It to find the username and password

HTTP Challenge Login Page

Logging In Without a Login Panel

« Cookies

— On successful login once, you might return
a cookie

« Then look for that cookie when a user returns

— Can be dangerous if
= User logs in from some other user's computer
= User uses IE and Cookies are attacked

Logging In Without a Login Panel

= Digital Certificates
— The ultimate In user security

— Reverse role from username/password
= \Neb server identifies user

= \WOApp merely authorizes access
(no password store need be consulted)

— Requires HTTPS

Digital ID and WebObjects

= Manipulating the ID

— Find It under a header as an ASN.1 BLOB
encoded in Base64 format

— Parse It Using the Java security package
(sun.security.x509.%)

— Validate 1t’s status via a CRL or VA

= \WQOSecurityKit includes a wrapper for ValiCert’s online
cert status software/service

Digital Certificates and
Granting Access

= \Web server can be configured to
grant access to certain digital certificates

= Or your WOApp can perform this duty

— Needs the certificate to see If you are allowed access

= Unfortunately the WOAdaptors shipped with WebObjects
either do not even ask for the cert, or they truncate it

= As part of the WOSecurityKit, you will find source code
for CGI and NSAPI adaptors that process a client
certificate properly

The Second Loophole

= Just because a unexpired digital ID Is issued by
a trusted CA does not mean it should be trusted

— The ID may have been revoked

— You should check a CRL or contact a VA before
accepting any digital ID

— Do merchant’s trust your VISA card? Or do they
scan It for validation?

Digital Certificates and the User

= User’s private key must perform an operation
(signing or encryption)

— To perform signing, a user must unlock their private
key (usually with a passphase)

— The private key Is usually stored in a file encrypted
with the access passphrase

Digital Certificates and the User

= Why bother with a Digital ID to avoid passwords,
when you use a password anyway to unlock it?

— Unlike a username/password, this password
does not leave your computer

— The passphrase Is something you created
= |t wasn't issued by anyone
= S0 only you know it

Digital Certificates and the User

= Storing a private key in a file has downsides

— Unlike a username/password, it’s not porta
(unless you carry a floppy)

— It should be extraordinarily well protected
and files don’t cut It

nle

Digital Certificates and the User
Smartcards to the Rescue

= A private key can be stored on a Smartcard
— Smartcards are as portable as credit cards
— Smartcards have a CPU that performs the

actual operations
= The private key never leaves the card
= Hacker would need to physically steal your card

— Smartcards can be attached to devices that accept
your passphrase directly

Digital Certificates and the User

For the Truly Paranoid...

= Some smartcards can be equipped with
a blometric passphrase

= You feed the passphrase data through

a blometric device

— Existing readers for: palm, finger, voice, face, or retina

— Imagine logging into a web site like this:
= Insert your smart card
= Place your thumb on it when prompted

= To digitally impersonate you, someone needs
your smartcard, and some part of your body

Digital Certificate Login and ValiCert.framework

Blocking Access to Your App

= Override WOComponent’s appendToResponse()
— Not necessarily OK to goto an action’s destination

— Prevent page display no matter how page Is
accessed:

= Initial app access, DA, or ComponentAction

— If you can see a ComponentAction it (usually)
means it’s OK to execute It

« |f not, don’t show It

Blocking Access to Your App

= Qverride WODirectAction’s
performActionNamed()

— DAs can be accessed from anywhere
= \Whether you gen the page or not (can’t hide them)

— Protecting appendToResponse() does not prevent
the DA from executing

= But does hide the result

Blocking Access to Your App

= Your version of appendToResponse()
might look like:

public void appendToResponse(WOResponserr,
WOContext c){
If(shouldDenyPageGen(aContext)){
WOComponent *p = WOApplication.application().
pageWithName(“LoginPage”, c);
r.setContent(p.generateResponse().content());
lelse{
super.appendToResponse(r, ¢);

Blocking Access to Your App

On Demand Login

= Before generating the LoginPage response, push it the
page name of the intended destination

— Get name from context passed into appendToResponse()

aContext.page().name()

— Name Is better than instance;
= Lighter weight
= No side effects

= Your LoginPagie then should goto to this destination
on successful login

On-demand Login

WOSecurityKit

e What Is It?
— Modified WOAdaptors including source
— A security whitepaper
— WXAuthPolicy framework
— Celo Digital Sig plug-in support framework
— ValiCert Digital Cert Validation support framework
— A Demo app that uses all of the above

WXAuthPolicy.framework

e What Is It?
— Three credential gathering schemes
= HTML page, HTTP challenge, and Certificate
— Hooks for custom auth biz logic
— Access posture for pages, actions, and privacy
— SSL access toggling support
— Sessionless login
— More...

WXAuthPolicy.framework

= How to use It?
— See the demo application CFN.app

— Involves inheriting your Components, Session,
DirectAction, and Application from WXAuthPolicy
superclasses

— Policy can be set in code or via GUI component

WXAuthPolicy.framework

= Where to get It?

— WOSecurityKit is available online at:
= http://enterprise.apple.com/wwdc2000

WXAuthPolicy: Access Posture, SSL Detection,
Fallback Login, On-the-Fly Policy Config

Access Control

Access Control

= Degree of access granted after they login

= The question Is:

— Given an instance of Entity A, Can User B
= See It?
= Edit it?
= Access depends on the state of both A and B
— What kind of EO Is being edited?
— What kind of user Is attempting to edit it?

Access Control

Techniques
= Have all your EOs implement an interface like this:

public boolean canShow(User usr);

public boolean canEdit(User usr);

Access Control

Techniques
= An example inheritance chain might look like this:

GenericO
SecuredEO
Product

= GenericeQO contains default access policy
= SecuredEQ dictates certain schema

= Product Is an example of an EO that might need
secured access

Access Control

Techniques
= Implementation of GenericEO might be:

public boolean canShow(User usr){
return true;

public boolean canEdit(User usr){
return true;

}

Access Control

Techniques
= Implementation of SecuredeO might be:

public boolean canShow(User usr){
If(usr.equals(creator()))
return true;
else if(owners().containsObject(usr))
return true;
return false;

}

public boolean canEdit(User usr){
return canShow(usr);

}

Complex Access Control

Ex: Discretionary Access Control

 To mimic DAC

— Your SecureEQOs might have relationships like these
= creator(): To-one to a User
= owners():To-many to a set of User objects

= groups(): To-many to a set of Group objects
= permission(): To-one to a Permission object

= Permission objects would have Y/N state assigned to columns
like: ownerRead, ownerEdit, groupRead, groupEdit, etc.

— The Unix file system uses DAC

Complex Access Control

Ex: Mandatory Access Control
= To mimic MAC

— Your permission table might have level names like

= “Secret”, “Confidential”, “Unclassified”
— Instead of a ?roups you would have compartments

with entries like

= “Accounting”, “Shipping”, “Marketing”
— Implement EOEditingContext delegates to intercept object
creation calls

= Your delegate would disallow insertions unless they had the right
permission, compartment assigned

= Unlike DAC, MAC means users with, say Secret permission could
not write to a lower permission level like Unclassified

Integrity

Integrity

= Aspects of Integrity
— Data corruption can be tested
— Data tampering can be detected
— Origin of data can be proved

= |ntegrity Is usually based on
— Digital signatures
— Public key crypto

What Is a Digital Signature?

* YoL
* YoL
* YoL

nash a message
Ise your private key to sign t

ne hash

append the signed hash to th

€ MesSage

Nonrepudiation

= You have It If you can prove an event happened
— In the paper world, it’s via ink signatures
— In the electronic world, it’s via digital signatures

B2C Digital Signatures

= Clients require a browser plug-in

= Example Applications
— Employee forms processing
— Brokerage enrollment
— Paperless workflow with authorization

Digital Signature in a Browser

B2B Digital Signatures

= When machines send and receive digitally
signed messages

= EX: DropShip order, PO, any EDI message

B2B Infrastructure in WebObjects

= WebObjects 4.0 added DirectActions

— Which turn WOApps into services easily callable
by other programs

— But it was still hard to talk to another WOApp programmatically

= WebObjects 4.5 adds additional
B2B-oriented support

— You can programmatically send WORequests to remote apps
and get their answers as WOResponses
— XML support included

= Help generate XML to be sent over the net
= Help interpret XML received

B2B Scenario

= Acme issues PO to WidgetCo
— Creates an XML document
— Signed using the Java’s sun.security.* package
— Encrypted using WidgetCo’s public key
— Sent using WOMessage API

B2B Scenario

= WidgetCo receives PO from Acme
— Decrypts with private key
— Verifies Acme digital signature is valid

— Verifies Acme digital ID is valid
= Using a CRL or ValiCert VA
— Creates a “digital receipt” by

= Combining Acme’s signed request with a “digital timestamp”
= And signing it all with WidgetCo’s private key

— Digital receipt returned to Acme

summary

= Cryptography

— Primer on how it works and usage (SSL and by-call)

= Authentication Techniques

— Meat of the talk, demos, and area addressed by the
WXAuthPolicy.framework built for this talk

= Access Control
— Controlling what t

INn EOS

ney see after they login

= Integrity of Trar

sactions

— Using digital signatures in B2C and B2B messaging, helped
along via Celo.framework built for this talk

Roadmap

413 WebObjects: XML Room J2
Useful for B2B applications Thurs., 3:00 p.m.

415 WebObjects: Advanced EOF FriRcS))(')(r)nOJazm
Place to learn more about biz objects Shhatanl

For More Information

nttp://www.rsa.com—and get the FAQ

nttp://www.va

icert.com—Ileading VA

nttp://www.ve

rIsign.com—Ieac

ng CA

nttp://www.ce

0COM.com—sig

ning plug-in

See the whitepaper and look over the demo
In WOSecurityKit

Session 409

David Neumann
SE, ValiCert

Who to Contact

Toni Trujillo Vian

Director, WebObjects Engineering
wofeedback@group.apple.com

Ernest Prabhakar

Product Line Manager, WebObjects
webobjects@group.apple.com

WWDC

Worldwide Developers Conference 2000

Think difterent.

Digital Certificates—Supplemental

= The SSL protocol has a second optional phase

— Client Authentication

= Like the server proves itself to the user, the user proves
itself to the server

= User does so by signing something, a signature the
server can verify

= |f the web server trusts the CA that issued your digital
ID and the signature verifies OK, only then do you even
get access to the WOApp!

Access Control

= You can implement this logic in 2 ways
— Top down (in your pages)
— Bottom up (in your EQs)

= Topc

own you replicate your logic eve

= Botto

M up you put the policy In once

— Your pages don’t have the policy

— Your pages only ask the questions, your EOs
answer them

'ywhere

nlace

B2C

Digital Signatures

Sample process flow

e User fills out HTML form and submits

= WOApp processes action,
— Gens document summarizing what user typed

— Returns page with a plug-in embedded in it
= Src attribute on plug-in retrieves document
Jser uses plug-in to select signing cert, enters

Nassp
Plug-|

nrase, and submits

N signs document and sends It to

the server

Secure Channel for eBusiness

= \WOMessage +WebObjects XML support
+public key crypto = secure channel for
nonrepudiable B2B communication

— Crypto signing provided by Java’s sun.security.*
— Crypto encryption by SSLeay, RSA, Intel, etc.
— Credential validation with ValiCert.framework

