
1 6/28/00Apple Confidential

WebObjects and Security

David Neumann
System Engineer

Session 409

2 6/28/00Apple Confidential

Introduction

• Security Concepts
• Coding techniques
• Discussion of a new security kit for WebObjects

– WOSecurityKit including frameworks, WOAdaptors,
and a demo

• B2B applications

3 6/28/00Apple Confidential

What Is Security

• Secrecy
– The focus of this talk

• Integrity
– Some detail

• Availability
– Not covered: things like DoS

4 6/28/00Apple Confidential

Outline

• Cryptography
• Authentication Techniques
• Access Control in EOs
• Integrity of Transactions

5 6/28/00Apple Confidential

Cryptography

6 6/28/00Apple Confidential

Cryptography

• Crypto Primer
– Secret Key Crypto

•You share a single secret,
a different secret with each user

– Public Key Crypto
•You share a public secret with all users,

but keep a private secret only you know

7 6/28/00Apple Confidential

Customer Bill Acme Corp
Share secret

Encrypt Data w/ secret

• You encrypt data for a secure channel
• But to get a secure channel you must

exchange a secret
• So you need a secure channel to get

a secure channel

The Secure Channel Problem
Secret Key Crypto

8 6/28/00Apple Confidential

Secret Key Crypto

Customers

Acme CorpShare Secrets

• Sharing the secret must be done carefully
– Meeting face-to-face at a ‘registration authority’

• Acme has to do it (differently with different key)
for every Customer
– The same secret shared by all isn’t much of a secret

The Key Distribution Problem

9 6/28/00Apple Confidential

Public Key Crypto

Customer Bill Acme Corp
Share Public Key

Encrypt Data w/ Pub Key

• You encrypt data with public key
• Key can be shared in the clear
• Only private key can read the data

– Public key cannot decrypt what it encrypts

No Secure Channel Problem

10 6/28/00Apple Confidential

Public Key Crypto

Customers

• You can publish the same non-secret to world
– No special meetings

• Every customer can use the same key
• Still two loopholes

No More Key Distribution Problem (Almost)
Share Public Key

Acme Corp

11 6/28/00Apple Confidential

Public Key Crypto Loophole #1

• Q: How do you know that the key for Acme is
for the real Acme?

• A: You don’t—unless you have some credentials
that say so

• Solution:
– A trusted third-party that assures Acme is Acme by issuing

an ID binding Acme’s public key to its address, name, D&B
number, etc.

– DoT issues driver’s license; Certificate Authority issues
digital ID—Both require a registration process

• The more involved this process, the better the ID

12 6/28/00Apple Confidential

Questions

• What is a secure hash?
• What is a digital signature?
• How do you know which CAs to trust?
• How can you tell a fake ID from a real one?
• How can I get an ID for encrypting a message?
• What is the second public key crypto loophole?

13 6/28/00Apple Confidential

SSL

• SSL is an implementation of public key
crypto on the web
– Acme.com’s web server presents its Digital ID
– Your browser checks that the ID is issued by a

trusted CA
– Your browser encrypts a random secret key to the

server using the server’s public key
– Browser and server exchange further info

encrypted using secret key crypto

14 6/28/00Apple Confidential

Using SSL in WebObjects

• You don’t have to lift a finger in some cases
– A sysadmin however will need to:

• Get a digital ID (server certificate) from a CA like VeriSign,
Entrust.net, etc.

• Configure web site to use it
– For test ID: http://digitalid.verisign.com/server/trial/index.html

• WOApp has to run behind a web server such
as Apache, iPlanet/Netscape, or IIS

• Resources are accessed using https:// instead of http://
– Doesn’t that sound easy?

15 6/28/00Apple Confidential

Using SSL in WebObjects

• WebObjects generates partial URLs by default

• If you access site over secure URL, this link will be secure

• To force SSL you need to
– Access your app from a secure link, or
– Force WebObjects to generate full URLs

/cgi-bin/WebObjects/App.woa/wo/F00000EXSA/1.2

https://wosite.com/cgi-bin/WebObjects/App.woa/wo/F00000EXSA/1.2

16 6/28/00Apple Confidential

Forcing Access over SSL

• Use private Obj-C API to force full URLs

• Create custom WOHyperlink and WOForm
implementaions

• Use a redirect technique
– Method used in the Technotes in the WOInfoCenter
– Method lets you use normal elements and doesn’t

require private API

http://til.info.apple.com/techinfo.nsf/artnum/n70101

17 6/28/00Apple Confidential

SSL URLs via Custom Component

• ‘action’ is the method on your page to invoke
• ‘href’ is the actual URL WebObjects generates
• See WXHyperlink for a starting point

– Use method like this for href in your version:

HyperlinkContainer: WOGenericContainer {
 elementName = "a";
 invokeAction = ^action;
 href = href; }

public String href(){
return “https://hostname” +

 context().componentActionURL(); }

18 6/28/00Apple Confidential

DEMO

SSL using Redirect—Introduce WebObjects AuthPolicy

19 6/28/00Apple Confidential

Encrypting Programmatically

• Why? Some stuff should be secret
– Passwords, credit card numbers, personal data…

• How?
– Buy a crypto lib such as BSAFE

(C-lib) and JSAFE (Java lib) from RSA
– Download a free lib such as SSLeay, Intel’s CDSA,

Microsoft’s CyptoLib

20 6/28/00Apple Confidential

Encryption Techniques

• Explicitly call crypto functions
• Implicitly encrypt/decrypt

– Use custom accessor methods:
•Encrypt in setMethods
•Decrypt in getMethods

– For performance
•cache on get
•Reset cache on set

21 6/28/00Apple Confidential

Encryption Questions

• What key size?
• Does my data get less secure

as computing power increases?

22 6/28/00Apple Confidential

Authentication Techniques

23 6/28/00Apple Confidential

How to Login

• There are two logical, and two physical aspects
– Logical

•Are you whom you claim to be?
•Do you have access?

– Physical
•Gathering credentials (presentation specific)
•Processing credentials (business policy specific)

24 6/28/00Apple Confidential

When to Login

• No pages allowed unless logged in
• Allow surfing until login required

– Show link to login, and re-navigate to
protected page

– Prompt for login then immediately access
protected page

• Prompt for login on WOSession timeout

25 6/28/00Apple Confidential

When to Login

• Access Posture
– Default to allow/deny all pages?
– Default to allow/deny all DirectActions?
– Must access all pages in private (over SSL)?
– Exceptions if any to the default posture?

26 6/28/00Apple Confidential

Login Panels

• Simple, right?
– Many ways to gather username/password

•HTML page, HTTP login panel, Certificate, Cookie

– Many ways to verify credentials
•RDBMS? LDAP? File? ERP App?

– WOAuthPolicy provides
•Three presentation styles
•Delegation hooks for custom verification business logic

27 6/28/00Apple Confidential

Sessionless Login

• Benefits
– Allows login page to be bookmarked
– No “session expired” on login!
– Less resource impact on you (sessions can be heavyweight)

• For HTML page, use WOForm and DirectAction

28 6/28/00Apple Confidential

Sessionless Login

• Use the DirectAction action handler as the “default
action handler”

• Force WebObjects to goto your LoginPage page instead
of Main

• In your LoginPage, do not call session() anywhere
– This goes for any subcomponents or sub-subcomponents

used on your LoginPage
– Be wary of session.foo bindings in any wod files

29 6/28/00Apple Confidential

Sessionless Login

• In your DirectAction subclass of
WODirectAction, override defaultAction
public WOActionResults defaultAction() {
 return pageWithName(“LoginPage”); }

• In your Application subclass of WOApplication,
enter this line into the constructor
setDefaultRequestHandler(
 requestHandlerForKey(
WOApplication.directActionRequestHandlerKey()
));

30 6/28/00Apple Confidential

DEMO

HTML Login Page

31 6/28/00Apple Confidential

Using HTTP Challenge Panel

• Really tricky to do in WebObjects…
– See the technote in the WOInfoCenter for details
– Your WOResponse must emit certain statuses

and headers, and look for certain headers
in WORequests

– Your web server might not work
– You have to parse Base64 encoded data

32 6/28/00Apple Confidential

Using HTTP Challenge Panel

• Getting Browser to prompt the panel

• To interpret the response you need to look for a
header in the WORequest named “authorization”

• Your web server must use an interface that passes this
header to the WOAdaptor
– CGI with Netscape does not
– NSAPI does

aResponse.setStatus(401);
aResponse.setHeader(“Basic realm=\”” +
 aRealm + “\””, ”WWW-Authenticate”);

33 6/28/00Apple Confidential

Using HTTP Challenge Panel

• To decode the authorization header,
use the JDK’s Base64 support

• Once you have a normal character string, you
can parse it to find the username and password

decoder = new sun.misc.BASE64Decoder();

34 6/28/00Apple Confidential

DEMO

HTTP Challenge Login Page

35 6/28/00Apple Confidential

Logging in Without a Login Panel

• Cookies
– On successful login once, you might return

a cookie
•Then look for that cookie when a user returns

– Can be dangerous if
•User logs in from some other user’s computer
•User uses IE and Cookies are attacked

36 6/28/00Apple Confidential

Logging in Without a Login Panel

• Digital Certificates
– The ultimate in user security
– Reverse role from username/password

•Web server identifies user
•WOApp merely authorizes access

(no password store need be consulted)

– Requires HTTPS

37 6/28/00Apple Confidential

Digital ID and WebObjects

• Manipulating the ID
– Find it under a header as an ASN.1 BLOB

encoded in Base64 format
– Parse it Using the Java security package

(sun.security.x509.*)
– Validate it’s status via a CRL or VA

•WOSecurityKit includes a wrapper for ValiCert’s online
cert status software/service

38 6/28/00Apple Confidential

Digital Certificates and
Granting Access

• Web server can be configured to
grant access to certain digital certificates

• Or your WOApp can perform this duty
– Needs the certificate to see if you are allowed access

•Unfortunately the WOAdaptors shipped with WebObjects
either do not even ask for the cert, or they truncate it

•As part of the WOSecurityKit, you will find source code
for CGI and NSAPI adaptors that process a client
certificate properly

39 6/28/00Apple Confidential

The Second Loophole

• Just because a unexpired digital ID is issued by
a trusted CA does not mean it should be trusted
– The ID may have been revoked
– You should check a CRL or contact a VA before

accepting any digital ID
– Do merchant’s trust your VISA card? Or do they

scan it for validation?

40 6/28/00Apple Confidential

Digital Certificates and the User

• User’s private key must perform an operation
(signing or encryption)
– To perform signing, a user must unlock their private

key (usually with a passphase)
– The private key is usually stored in a file encrypted

with the access passphrase

41 6/28/00Apple Confidential

Digital Certificates and the User

• Why bother with a Digital ID to avoid passwords,
when you use a password anyway to unlock it?
– Unlike a username/password, this password

does not leave your computer
– The passphrase is something you created

•It wasn’t issued by anyone
•So only you know it

42 6/28/00Apple Confidential

Digital Certificates and the User

• Storing a private key in a file has downsides
– Unlike a username/password, it’s not portable

(unless you carry a floppy)
– It should be extraordinarily well protected

and files don’t cut it

43 6/28/00Apple Confidential

Smartcards to the Rescue
Digital Certificates and the User

• A private key can be stored on a Smartcard
– Smartcards are as portable as credit cards
– Smartcards have a CPU that performs the

actual operations
•The private key never leaves the card
•Hacker would need to physically steal your card

– Smartcards can be attached to devices that accept
your passphrase directly

44 6/28/00Apple Confidential

For the Truly Paranoid…
Digital Certificates and the User

• Some smartcards can be equipped with
a biometric passphrase

• You feed the passphrase data through
a biometric device
– Existing readers for: palm, finger, voice, face, or retina
– Imagine logging into a web site like this:

• Insert your smart card
• Place your thumb on it when prompted

• To digitally impersonate you, someone needs
your smartcard, and some part of your body

45 6/28/00Apple Confidential

DEMO

Digital Certificate Login and ValiCert.framework

46 6/28/00Apple Confidential

Blocking Access to Your App

• Override WOComponent’s appendToResponse()
– Not necessarily OK to goto an action’s destination
– Prevent page display no matter how page is

accessed:
•Initial app access, DA, or ComponentAction

– If you can see a ComponentAction it (usually)
means it’s OK to execute it

•If not, don’t show it

47 6/28/00Apple Confidential

Blocking Access to Your App

• Override WODirectAction’s
performActionNamed()
– DAs can be accessed from anywhere

•Whether you gen the page or not (can’t hide them)

– Protecting appendToResponse() does not prevent
the DA from executing

•But does hide the result

48 6/28/00Apple Confidential

Blocking Access to Your App

• Your version of appendToResponse()
might look like:
public void appendToResponse(WOResponse r,
WOContext c){
 if(shouldDenyPageGen(aContext)){

 WOComponent *p = WOApplication.application().
 pageWithName(“LoginPage”, c);
 r.setContent(p.generateResponse().content());
 }else{
 super.appendToResponse(r, c);
 }
}

49 6/28/00Apple Confidential

Blocking Access to Your App

• Before generating the LoginPage response, push it the
page name of the intended destination
– Get name from context passed into appendToResponse()

– Name is better than instance:
• Lighter weight
• No side effects

• Your LoginPage then should goto to this destination
on successful login

 aContext.page().name()

On Demand Login

50 6/28/00Apple Confidential

DEMO

On-demand Login

51 6/28/00Apple Confidential

WOSecurityKit

• What is it?
– Modified WOAdaptors including source
– A security whitepaper
– WXAuthPolicy framework
– Celo Digital Sig plug-in support framework
– ValiCert Digital Cert Validation support framework
– A Demo app that uses all of the above

52 6/28/00Apple Confidential

WXAuthPolicy.framework

• What is it?
– Three credential gathering schemes

•HTML page, HTTP challenge, and Certificate

– Hooks for custom auth biz logic
– Access posture for pages, actions, and privacy
– SSL access toggling support
– Sessionless login
– More…

53 6/28/00Apple Confidential

WXAuthPolicy.framework

• How to use it?
– See the demo application CFN.app
– Involves inheriting your Components, Session,

DirectAction, and Application from WXAuthPolicy
superclasses

– Policy can be set in code or via GUI component

54 6/28/00Apple Confidential

WXAuthPolicy.framework

• Where to get it?
– WOSecurityKit is available online at:

•http://enterprise.apple.com/wwdc2000

55 6/28/00Apple Confidential

DEMO

WXAuthPolicy: Access Posture, SSL Detection,
Fallback Login, On-the-Fly Policy Config

56 6/28/00Apple Confidential

Access Control

57 6/28/00Apple Confidential

Access Control

• Degree of access granted after they login
• The question is:

– Given an instance of Entity A, Can User B
•See it?
•Edit it?

• Access depends on the state of both A and B
– What kind of EO is being edited?
– What kind of user is attempting to edit it?

58 6/28/00Apple Confidential

Access Control

• Have all your EOs implement an interface like this:
Techniques

public boolean canShow(User usr);

public boolean canEdit(User usr);

59 6/28/00Apple Confidential

Access Control

• An example inheritance chain might look like this:

• GenericEO contains default access policy
• SecuredEO dictates certain schema
• Product is an example of an EO that might need

secured access

Techniques

GenericEO
 SecuredEO
 Product

60 6/28/00Apple Confidential

Access Control

• Implementation of GenericEO might be:
Techniques

public boolean canShow(User usr){
return true;

}
public boolean canEdit(User usr){

return true;
}

61 6/28/00Apple Confidential

Access Control

• Implementation of SecuredEO might be:
Techniques

public boolean canShow(User usr){
if(usr.equals(creator()))

return true;
else if(owners().containsObject(usr))

return true;
 return false;
}

public boolean canEdit(User usr){
return canShow(usr);

}

62 6/28/00Apple Confidential

Complex Access Control

• To mimic DAC
– Your SecureEOs might have relationships like these

• creator(): To-one to a User
• owners():To-many to a set of User objects
• groups(): To-many to a set of Group objects
• permission(): To-one to a Permission object
• Permission objects would have Y/N state assigned to columns

like: ownerRead, ownerEdit, groupRead, groupEdit, etc.

– The Unix file system uses DAC

Ex: Discretionary Access Control

63 6/28/00Apple Confidential

Complex Access Control

• To mimic MAC
– Your permission table might have level names like

• “Secret”, “Confidential”, “Unclassified”

– Instead of a groups you would have compartments
with entries like

• “Accounting”, “Shipping”, “Marketing”

– Implement EOEditingContext delegates to intercept object
creation calls

• Your delegate would disallow insertions unless they had the right
permission, compartment assigned

• Unlike DAC, MAC means users with, say Secret permission could
not write to a lower permission level like Unclassified

Ex: Mandatory Access Control

64 6/28/00Apple Confidential

Integrity

65 6/28/00Apple Confidential

Integrity

• Aspects of Integrity
– Data corruption can be tested
– Data tampering can be detected
– Origin of data can be proved

• Integrity is usually based on
– Digital signatures
– Public key crypto

66 6/28/00Apple Confidential

What Is a Digital Signature?

• You hash a message
• You use your private key to sign the hash
• You append the signed hash to the message

67 6/28/00Apple Confidential

Nonrepudiation

• You have it if you can prove an event happened
– In the paper world, it’s via ink signatures
– In the electronic world, it’s via digital signatures

68 6/28/00Apple Confidential

B2C Digital Signatures

• Clients require a browser plug-in
• Example Applications

– Employee forms processing
– Brokerage enrollment
– Paperless workflow with authorization

69 6/28/00Apple Confidential

DEMO

Digital Signature in a Browser

70 6/28/00Apple Confidential

B2B Digital Signatures

• When machines send and receive digitally
signed messages

• Ex: DropShip order, PO, any EDI message

71 6/28/00Apple Confidential

B2B Infrastructure in WebObjects

• WebObjects 4.0 added DirectActions
– Which turn WOApps into services easily callable

by other programs
– But it was still hard to talk to another WOApp programmatically

• WebObjects 4.5 adds additional
B2B-oriented support
– You can programmatically send WORequests to remote apps

and get their answers as WOResponses
– XML support included

• Help generate XML to be sent over the net
• Help interpret XML received

72 6/28/00Apple Confidential

B2B Scenario

• Acme issues PO to WidgetCo
– Creates an XML document
– Signed using the Java’s sun.security.* package
– Encrypted using WidgetCo’s public key
– Sent using WOMessage API

73 6/28/00Apple Confidential

B2B Scenario

• WidgetCo receives PO from Acme
– Decrypts with private key
– Verifies Acme digital signature is valid
– Verifies Acme digital ID is valid

•Using a CRL or ValiCert VA

– Creates a “digital receipt” by
• Combining Acme’s signed request with a “digital timestamp”
• And signing it all with WidgetCo’s private key

– Digital receipt returned to Acme

74 6/28/00Apple Confidential

Summary

75 6/28/00Apple Confidential

Summary

• Cryptography
– Primer on how it works and usage (SSL and by-call)

• Authentication Techniques
– Meat of the talk, demos, and area addressed by the

WXAuthPolicy.framework built for this talk

• Access Control in Eos
– Controlling what they see after they login

• Integrity of Transactions
– Using digital signatures in B2C and B2B messaging, helped

along via Celo.framework built for this talk

76 6/28/00Apple Confidential

Roadmap

Room J2
Thurs., 3:00 p.m.

Room J2
Thurs., 3:00 p.m.

Room J2
Fri., 9:00 a.m.

Room J2
Fri., 9:00 a.m.

413 WebObjects: XML
Useful for B2B applications

415 WebObjects: Advanced EOF
Place to learn more about biz objects

77 6/28/00Apple Confidential

For More Information

http://www.rsa.com—and get the FAQ
http://www.valicert.com—leading VA
http://www.verisign.com—leading CA
http://www.celocom.com—signing plug-in
See the whitepaper and look over the demo
in WOSecurityKit

78 6/28/00Apple Confidential

Session 409

Q&A

David Neumann
SE, ValiCert

79 6/28/00Apple Confidential

Who to Contact

Toni Trujillo Vian
Director, WebObjects Engineering
wofeedback@group.apple.com

Ernest Prabhakar
Product Line Manager, WebObjects
webobjects@group.apple.com

82 6/28/00Apple Confidential

Digital Certificates—Supplemental

• The SSL protocol has a second optional phase
– Client Authentication

•Like the server proves itself to the user, the user proves
itself to the server

•User does so by signing something, a signature the
server can verify

•If the web server trusts the CA that issued your digital
ID and the signature verifies OK, only then do you even
get access to the WOApp!

83 6/28/00Apple Confidential

Access Control

• You can implement this logic in 2 ways
– Top down (in your pages)
– Bottom up (in your EOs)

• Top down you replicate your logic everywhere
• Bottom up you put the policy in once place

– Your pages don’t have the policy
– Your pages only ask the questions, your EOs

answer them

84 6/28/00Apple Confidential

Sample process flow
B2C Digital Signatures

• User fills out HTML form and submits
• WOApp processes action,

– Gens document summarizing what user typed
– Returns page with a plug-in embedded in it

• Src attribute on plug-in retrieves document
• User uses plug-in to select signing cert, enters

passphrase, and submits
• Plug-in signs document and sends it to

the server

85 6/28/00Apple Confidential

Secure Channel for eBusiness

• WOMessage +WebObjects XML support
+public key crypto = secure channel for
nonrepudiable B2B communication
– Crypto signing provided by Java’s sun.security.*
– Crypto encryption by SSLeay, RSA, Intel, etc.
– Credential validation with ValiCert.framework

