ValiCert ® Validator Toolkit™

Programmer’s Guide

Version 3.2

<,

ValiCert

Enabling Global Private Trust™

©2000 ValiCert, Inc. All rights reserved. ValiCert and the ValiCert logo are
registered trademarks of ValiCert, Inc. Certificate Revocation Tree, Freshness
Proof, ValiCert Enterprise VA, ValiCert Certificate VA, ValiCert VA Publisher,
ValiCert Validator Suite, ValiCert Address Book Validator, ValiCert E-Mail
Validator, ValiCert Web Server Validator, ValiCert Browser Validator, ValiCert
Validator Toolkit, and ValiCert Stateful Validation are trademarks of ValiCert,
Inc. ValiCert Global VA Service is a service mark of ValiCert, Inc. All other
company and product names are trademarks of their respective owners.

ValiCert, Inc.
1215 Terra Bella Avenue
Mountain View, CA 94043

Part Number: DCU-W-TKPG-0301E

Revision: 0100-1

Contents

Preface

1 Introduction

Product Architecture. 2
Supported Validation Mechanisms. 3
Certificate Revocation Lists (CRLS)t 4
Online Certificate Status Protocol (OCSP). 4
Certificate Revocation Trees™ (CRTS)t iiiie ... 5
System ReqUIrEMENESo e 5
Other Considerationsot e 6

2 Using the Toolkit

X.509 Certificate Format 7
Toolkit Memory Model e 9
Integrating Crypto Libraries 10
Implementing Basic Validation in an Application 11
Sample Basic Application. 13
Extending Validation in Your Application. 20
Creating Context for Local VA 21
Code Sample for Creating Context for Local VA 21
Communicatingwitha VA 22
Code Sample for Communicating with VA 23
Customizing VA information. 26
Code Sample for Customizing VA Information 27
Getting Detailed Revocation Information 29

ValiCert Enterprise VA

Code Sample for Obtaining Revocation Information 29

Building and Validating Certificate Chains. 35
Code Sample for Building and Validating Certificate Chain .. .36
Getting Extension Information 38
Code Sample for Getting Extension Information 40
Adding Logging 42
Code Samples For Adding Logging 42
Implementing Specialized Validation Processing 49
Producing Signed Requests. 49
Code Sample for Customizinga Context 50
Code Sample for Signing OCSP Requests 52
Checking Delegated VA Certificates 53
Code Sample for Checking Delegated Certificates 54
Setting Proxy Information. o 57
Code Sample for Setting Proxy Information 58
Adding OCSP EXtensions 58
Code Sample for Adding OCSP Extensions 59
Getting Validation Handle for Specific Certificate 63
Code Sample for Getting Validation Handle 64

3 Toolkit Reference

CoNStaNntsS. 68
VTK_GVAS URL. ... e s 68
Enumerations. 69
VIK_ CtXtLOgTYpe . . o oo 69
VIK_CtxtOptionType. 71
Vik DataFormat. 76
VIK DataType ..o 77
Vtk_RevocationReason i, 78
Vik ValidationMech 80
Data StruCtures 81
VIK_BUffer ... 82
VK BYEE. .« . ottt e e e 84
Vik Callback 85

iv ValiCert Enterprise VA

VK Gt . e 87

ViK Certinfo. e 88
VIK CertStore. o e 90
Vtk_CRLProtocolDetails. 91
Vtk_ CRLRespDetailso 92
Vtk_ CRTRespDetails 93
VK Xt . . et e 94
VIK CtXtOptioNTYPE . . . ot e e 95
VIK EXtEeNSION 97
VIK EXIENSIONS . . e 98
VIK LogOoptionso 99
Vitk OCSPSigninfo. i e 101
Vtk_ProtocolDetails 102
ViK Proxylnfo. e 104
Vtk_ValHdl 105
Vik_Validation e 106
Vik ValRespDetails i, 107
Vitk ValRespSingleCertDetails. 109
VIK ValQUETY . . o e 111
Callback FuNnctions. 113
Vtk_ChainBuildCallBack 113
Vtk_CloseLogCallback. 115
Vitk DelegatedissuerCallBack 117
Vtk OCSPSignCallBack 119
Vtk_OpenLogCallback 121
Vik WriteLogCallback i, 123
Functions 125
Vik_CertDelete.o 126
Vik_CertGetEXtensionsttt e 127
Vik CertGetIinfo e 129
VIK_CertGetlSSUBr . .. 131
Vik_CertinfoDelete. e 133
VIK_Certlnit 135
Vtk_CertLoadFromFile. 137
VIK CertNew e 139
Vik_CertStoreAddCerto 141

ValiCert Enterprise VA

Vtk_CertStoreAddCertRaw 143

Vik_CertStoreDelete i 145
Vitk_CertStoreLoadFromFile 146
Vik_CertStoreNew 148
VIK ClosSelog. 150
Vitk CRLValidateCert. 151
VIK_CtxtAddCert 153
VIK CtxtAddCerts. oo 155
VIK CtxtDelete. oo 157
VIK_CtxtGetOption. 158
VIK CIXINEW . .o 160
Vik_CtxtOptionDeleteContent ciiu... 162
Vik_CtxtSetDefaultVa 164
VIK CtxtSetOption 166
Vik CtxtSetValnfo 168
VIK_ErrorToStringo 170
VIK ErrorToString r. . ..ot e 171
Vik_ExtensionDelete 173
Vtk_ExtensionGetByOid. 175
Vik_ Extensionlnit. 177
VIK ExtensionNew. i 179
Vtk_ExtensionsDelete 181
Vik_ExtensionsGetCount. 183
Vik_ExtensionsGetith. 185
VIK_Finish 187
VK NIt . 188
VIK OpenLog. ... 189
VIK_StatusToStrings 191
Vik_StatusStringsDelete 192
Vik ValHdIDelete. 193
Vtk_ValHdIGetRevStatus. 195
Vik ValidationAddCert. 198
Vtk_ValidationAddCertRaw 200
Vtk_ValidationAddCertChain 202
Vik ValidationAddReqEXxt 204
Vtk_ValidationAddRegExtForSingleCert 206

Vi

ValiCert Enterprise VA

Vtk_ValidationAddRegExtForSingleCertHdl 208

Vik ValidationDelete 210
Vik ValidationGetRevStatusc ... 212
Vtk_ValidationGetQueries 215
Vik ValidationGetValHdl, 217
Vik ValidationNew. i e 219
Vtk_ValidationSetValnfo 221
Vik ValidationValidate., 223
Vitk ValidationValidateFromQueries 225
Vtk_ValQueriesDelete 227
Vitk ValRespDetailsDelete. 229
Vitk_ValRespSingleCertDetailsDelete 231
VIK WItELOG .« . oo e e 233

A Error and Status Codes

Error Codes oo 235
StatUS COdBS . . o oot 237

Index

ValiCert Enterprise VA vii

Viii ValiCert Enterprise VA

Preface

This guide describes how an application developer can use the ValiCert
Validator Toolkit to integrate digital certificate validation into their own

application.

Audience

We assume that the developer is familiar with the following:

% C programming language

< Fundamentals of digital certificates and validation

Organization of This Guide

Section

Description

Introduction

Using the Toolkit
Toolkit Reference

Error and Status
Codes

Provides an overview of the Toolkit

Describes how to use the various functions to perform
validation. This chapter includes a sample program

Provides reference information about the data structures and
functions provides as part of the Toolkit.

List all the error codes and status codes that can be
returned.

ValiCert Validator Toolkit

ix

Preface

Typographical Conventions

The following typographical conventions are used in this guide to help you
locate and identify information:

Italic text is used for emphasis and book titles.

Bold text identifies menu names, menu options, items you can click on the
screen, and keyboard keys.

Courier font identifies commands you enter at the command line, file
names, folder names, and text that either appears on the screen or that you
are required to type in.

m NOTE: Notes provide significant, helpful information about a feature,
operation, or procedure.

ValiCert Documentation

< ValiCert Enterprise VA™ Installation and Administration Guide
< ValiCert VA Publisher™ Installation and Administration Guide
< ValiCert Validator Suite™ Installation and Configuration Guide
< \ValiCert Validator Toolkit™ Programmer's Guide

X ValiCert Validator Toolkit

Technical Support

ValiCert provides integration assistance and general customer support.
Please contact us through one of the following methods:

< Email: support@valicert.com
< Telephone: +1.650.567.5469
% Fax: +1.650.254.2148

0

When you contact us, we would appreciate your sending us as much detailed
information as possible regarding your:

< Network

0

< Platform
< Specific problem and how to reproduce it.

Credits

This product includes portions of SSLeay software
written by Eric Young (eay@mincom.oz.guCopyright
(C) 1995-1997 Eric Young. All rights reserved. This
product includes software written by Tim Hudson
(th@mincom.oz.au

This product includes software from Netscape
Communications Corp. Copyright (C) 1997 Netscape
Communications Corp. All rights reserved.

ValiCert Validator Toolkit Xi

mailto:support@valicert.com
mailto:eay@mincom.oz.au
mailto:tjh@mincom.oz.au

Preface

Xii

ValiCert Validator Toolkit

CHAPTER

1

Introduction

The ValiCert Validator Toolkit™ allows third-party developers to integrate
digital certificate validation into their client applications. It also allows client
applications to access the ValiCert Global VA Services™ which aggregates
certificate status information from many public CAs.

The Toolkit provides an API that can be used to integrate validation into the
application. It also enables applications to validate all types of digital
certificates. The ValiCert Validator Toolkit consists of three major
components:

< A set of functions that encapsulate x.509 certificate validation
< A set of functions that enable certificate parsing
“ Source code application examples that demonstrate how to use the API

The ValiCert Validator Toolkit saves developers time, and guides them
quickly through the implementation process. Consider the following
challenges:

« Different Certification Authorities (CAs) use different types of validation
mechanisms. There are already three major mechanisms that we have
discussed, and many more are in prototype stages. Each has its own
syntax, cryptography, messaging and communication mechanisms. The
ValiCert Validator Toolkit accommodates all available validation
mechanisms.

0
X4

% Even within a single mechanism such as Certificate Revocation Lists
(CRLs), different CA vendors use different encoding mechanisms to
understand and retrieve certificate “hot list” data. ValiCert Validator
Toolkit-enabled applications can receive aggregated CRL information
from the ValiCert Global VA Service, saving developers effort even
compared to implementing a simple mechanism.

However, the Toolkit does not address the Implementation of public key
cryptography. The Toolkit does not include, for example, an RSA license.

ValiCert Validator Toolkit

Introduction

Product Architecture

It is important to understand the relationship of the application to the Toolkit
and other components. This will help you to better understand the tasks of
your application and the functions that help perform them.

Your application can use the Toolkit to communicate with the VA or can
communicate with it directly.

The Toolkit supports several third-party crypto libraries. The Toolkit crypto
layer combined with a third-party crypto library is treated as a single lower
level component of the Toolkit architecture. Each single-lower component
interchangeable to meet the needs of your environment. For information
about integrating a crypto library into the Toolkit architecture, see “Integrating
Crypto Libraries” on page 10.

Figure 1 shows the relationship of your application to a VA, CA, ValiCert VA
Publisher, ValiCert Validator Toolkit, and third-party crypto libraries.

ValiCert Validator Toolkit

Supported Validation Mechanisms

Global
VA Service
VA
A
ca | valiCert Ad

Publisher "

{CRLs/CRLDPs)

“alidation Reg/Resp
(OCSP, CRT, CRL)

Publisher [*%

Errail or Y
Your Application

Application
Teclkat ARt

WaliCat Validstor Hoplewel Tookit
Toolkit

Lower-level | Crypto
components - Inteface

Figure 1. Product Architecture

Supported Validation Mechanisms

The Toolkit enables applications to validate all types of digital certificates and
to access the ValiCert Global VA Service. The Toolkit supports the following
validation mechanisms:

< Certificate Revocation Lists (CRLS)
< Online Certificate Status Protocol (OCSP)
< Certificate Revocation Trees™ (CRTSs)

ValiCert Validator Toolkit 3

Introduction

Certificate Revocation Lists (CRLS)

CRLs are the traditional method of certificate validation. Each CA publishes
signed lists of revoked certificates. The verifier downloads these lists, checks
the signature on the list, makes sure the list is recent, verifies the date of the
list, and searches the list to make sure that the serial number of the certificate
in question is not on the list.

CRLs are ill-suited to many applications because downloading the lists
becomes impractical as the number of certificates in circulation and on the
lists increases. Further, verifiers may have to collect lists from multiple CAs. In
short, the network bandwidth, reliability, latency and processing effort of
handling CRLs directly are likely to be—or to become—unacceptably large.

For more detailed technical information on CRLs, see RFC 2459 at:
http://www.ietf.org/html.charters/pkix-charter.html

Online Certificate Status Protocol (OCSP)

OCSP defines a mechanism for online certificate status checking, in which a
certificate recipient contacts a server (called an OCSP responder) each time it
needs to check a certificate’s status. OCSP is one of a broader class of
approaches that call for a recipient of a message to check some server to
ascertain certificate status.

In its pure form, this type of approach has the advantage of providing access
to the most up-to-date certificate status information. However, it has the
disadvantage of being cumbersome from a communications standpoint,
because every secure communication involving n certificates requires n other
network connections to ascertain the status of the certificates. Thus, OCSP is
expected to be the most appropriate protocol for high-security applications
requiring the most up to date certificate status information.

For more detailed information on OCSP, see RFC 2560:
http://www.ietf.org/html.charters/pkix-charter.ntml

4 ValiCert Validator Toolkit

http://www.ietf.org/html.charters/pkix-charter.html
http://www.ietf.org/html.charters/pkix-charter.html

System Requirements

Certificate Revocation Trees™ (CRTS)

CRTs are a high performance technique developed by ValiCert to allow
applications to validate certificates efficiently. This technique, based on a
cryptographic data structure called a certificate revocation tree, achieves two

goals:

1 Amortize certificate validation costs over many transactions : A user,
having gained short-term proof that its certificate is valid, can use this
proof over many secure transactions. More importantly, if the user
encloses such proof in a message, recipients can be assured the
certificate is valid without making external network requests.

2 Structure certificate validity assurance data efficiently

: The CRT data

structure reduces the data transfers required to create certificate status
information and disseminate it by several orders of magnitude. This
increases the speed of validation, reduces bandwidth consumption, and
increases scalability to a virtually unlimited number of users.

CRTs work with existing protocols and X.509 certificates. CRT validation may
be used in applications transparently by means of the Toolkit API.

System Requirements

Table 1 lists the system requirements for using the Toolkit.

Table 1.

System Requirements

Requirement

Minimum

Recommended

Hardware

Memory

Disk Space

For Windows:

< Intel Pentium-based
or compatible
systems

For Solaris:

< Sun SPARCstation 5

32 MB
20 MB

For Windows:

< Intel Pentium-II
based or
compatible
systems

For Solaris:

< SunUltra or
compatible

64 MB
20 MB

ValiCert Validator Toolkit

http://www.ietf.org/html.charters/pkix-charter.html

Introduction

Table 1.

System Requirements (Continued)

Requirement

Minimum

Recommended

Operating Systems

Compilers

Crypto libraries

0
Q

BSAFE 3.0 or later

Microsoft Windows
(x86 based systems)

Windows NT
Workstation /Server
4.0 or later

Windows 95/98

Not applicable

Solaris (SPARC
Platform Edition):

Solaris 2.6/2.7

Microsoft Visual
Studio 97 (Windows
Platform)

Not applicable

Sun Visual Workshop
4.2 (Sun Solaris
Platform)

Not applicable

Other Considerations

< The Toolkit APIs in this release are not compatible with previous releases.

< The Toolkit is a DLL on the Windows platform and a shared object on the

Solaris platform.

< The Toolkit’'s support for crypto libraries adds libraries to the dependency
list for Toolkit users.

ValiCert Validator Toolkit

CHAPTER

2
Using the Toolkit

This chapter provides information about how you can use the Toolkit API to
integrate certificate validation into your application.

Before you begin using the Toolkit functions, familiarize yourself with the
following:

< X.509 Certificate Format

< Toolkit Memory Model

< Integrating Crypto Libraries

Once you understand these concepts, you will better understand the
following information:

< Implementing Basic Validation in an Application

< Extending Validation in Your Application

< Implementing Specialized Validation Processing

X.509 Certificate Format

The X.509 certificate uses a standardized format to allow interoperability
between applications, Certificate Authorities, and Validation Authorities.

Figure 2 shows the format of a X.509 v3 certificate.

m NoTE: X.509 v1 certificates do not support extensions.

ValiCert Validator Toolkit

Using the Toolkit

YErSion

Certificate Serial Mumber

Signature Algorithm #
ldentifier

|ssuer

Walidity Period

Subject

Subject Public Key
Information

|ssLUer UI"IIE]L,IE [dentifier
(Optional)

Subject Unique Identifier ®
(Optional)

Extensions
(Optional)

CA's Digital Signature

Legend:

Cerificate Authority's
Private Key

1 werzion number of encoded cerificate 7

2 unigue number azzigned by the CA

3 algorthm used by CAto sign the a
cerificate, e.g. RE4

4 CA who has signed and issued a
the certificate

§ time interval (start date-end date) for
which the cerificate was issued

G holder of the private key for which
the public key is being certified

10

Figure 2. X.509 Certificate Format

public key, parameters and the
algarthm uzed

optional, allows atternstive identifier
far izzuer (rarely uzed)

optional, allows atternstive identifier
far subject (rarely used)

optional, allows organization to

add extenzion fields specific to
their needs

ValiCert Validator Toolkit

Toolkit Memory Model

Toolkit Memory Model

The Toolkit uses a very simple memory model. For every structure for which
you allocate memory using a Toolkit function, you must then use another
Toolkit function to release the memory. If you do not observe this simple
model, your application will create memory leaks which can result in
performance degradations and other problems.

m NoTE: The Vtk_Init function and Vtk_Finish functions allocate

resources to the Toolkit. Vtk_Init must be called first, before
any other Toolkit function and Vtk_Finish must be called last,
after all other functions have completed. Both must only be
called once.

The Table 2 shows the Toolkit functions you can use to allocate and release

memory.

Table 2. Memory Allocation and Release Functions
Allocation Function Release Function
Vtk_CertGetExtensions Vtk_ExtensionsDelete
Vtk_CertNew Vtk_CertDelete
Vtk_CertStoreNew Vtk_CertStoreDelete
Vtk_CtxtGetOption Vtk_CtxtGetOptionDeleteContent
Vtk_CtxtNew Vtk_CtxtDelete
Vtk_ExtensionGetByOid Vtk_ExtensionDelete
Vtk_ExtensionGetith
Vtk_StatusToStrings Vtk_StatusStringsDelete
Vtk_ValHdIGetRevStatus Vtk_ValRespSingleCertDetailsDelete

Vtk_ValidationGetRevStatus
Vtk_ValRespSingleCertDetails

Vtk_ValHdIGetRevStatus Vtk_ValRespDetailsDelete
Vtk_ValidationGetRevStatus
Vtk_ValRespDetails

Vtk_ValidationAddCert Vtk_ValHdIDelete
Vtk_ValidationAddCerRaw
Vtk_ValidationGetValHdI

Vtk_ValidationGetQueries Vtk_ValQueriesDelete
Vtk_ValidationNew Vtk_ValidationDelete

ValiCert Validator Toolkit 9

Using the Toolkit

NOTE: In some functions, such as Vtk_ValidationAddCert and
Vtk_ValidationAddCertRaw, a pointer to a pointer (**hdl) will
allocate the memory without your application specifically
calling one of the allocation functions. However, your
application will continue to be responsible for releasing the
memory allocated; otherwise, memory leaks and other
problems will occur.

The Toolkit also provides two other resource allocation functions Vtk_Init and
Vtk_Finish. Vtk_Init must be called first, before any other Toolkit function and
Vtk_Finish must be called last, after all other functions have completed. Both
must be called only once.

Integrating Crypto Libraries

The Toolkit currently supports the following crypto libraries for Windows NT
and UNIX:

% RSA BSAFE Crypto-C

< Entegrity SDP

< Baltimore CST

< Microsoft CAPI (Windows only)

% Generic API for 3" party crypto vendors

Each crypto library combines with the Toolkit crypto layer to create a lower
level component of the Toolkit. The Toolkit distribution media provides the files
to support the crypto library. However, you must supply the crypto library and
integrate it into the Toolkit architecture for the Toolkit to become operational.
Further crypto library integration details are located on the Toolkit distribution
media in the crypto directory.

NoTE: The Toolkit supports other crypto libraries. Contact
support@valicert.com for information about integrating these
crypto libraries.

10

ValiCert Validator Toolkit

Implementing Basic Validation in an Application

Implementing Basic Validation in an Application

This section describes basic tasks that an application must perform to add
validation functionality. These tasks can all be done using the Toolkit API and
are described as steps within a procedure. The steps listed in this procedure
are also indicated in the sample application to demonstrate how an
application can implement these functions.

To integrate validation into your application

Step 1

Step 2

Initialize the Toolkit

Before your application can use the Toolkit functions, your
application must first initialize the Toolkit. Your application must call
the Vtk_Init function. Your application should call this function only
once. See * STEP 1 in sample application.

Create a Context

A context is the global Toolkit environment that your application
creates using the Vtk_CtxtNew function.

When your application creates the Toolkit context, your application
establishes the default VA URL and the validation protocol employed
(using the Vtk_CtxtSetDefaultVa function). See

* STEP 2a in sample application.

Your application also establishes the list of trusted certificates for the
VAs and CAs (using the Vtk_CtxtAddCerts or Vtk_CtxtAddCert
function) and the default VA and protocol (using the
Vtk_CtxtSetDefaultVa function). It can set the default protocol to
OCSP or CRT. See * STEP 2b in sample application.

NoTE: If your application does not call the
Vik_CtxtSetDefaultVa function, the default VA is set to Global
Validation Authority Service (GVAS) using the CRT protocol.

Your application passes this context in every Toolkit function it calls,
thereby making the information contained in the context structure
persistent across Toolkit calls.

Once the context is created, your application can perform a variety of
operations using the Toolkit.

ValiCert Validator Toolkit 11

Using the Toolkit

Step 3

Step 4

Create a validation structure.

Your application must call the Vtk_ValidationNew function to allocate
memory for a validation. The structure can encapsulate one or more
validation queries. See * STEP 3 in sample application.

Obtain user and issuer certificates to place in the validation
structure.

Your application can call the Vtk_CertNew to create an empty
certificate structure. See * STEP 4a in sample application. Once
created, your application can call the Vtk_Certlnit or the
Vtk_CertLoadFromFile function to populate the certificate structure
with data. See * STEP 4b in sample application.

Once the certificate structure is created and populated, your
application can add the certificates to validation structure.

NOTE: Your application can skip this step if it uses the
Vtk_ValidationAddCertRaw function in Step 5.

Step 5

Add certificates to the validation structure.

Your application must add certificates to the validation structure that
it created in Step 3. It can call the Vtk_ValidationAddCert and
Vtk_ValidationAddCertRaw functions. See * STEP 5 in sample
application.

NOTE: Steps 4 and 5 can be repeated to add other
certificates to the validation structure.

Step 6

Step 7

Validate certificates.

When your application uses the Toolkit functions, most of the work is
done locally between your application and the Toolkit using the API.
However, when actual validation is to be performed, the application
calls the Vtk_ValidationValidate function which requires interaction
with the VA, usually over a TCP/IP based network. See * STEP 6 in
sample application.

Clean up the memory allocations.

Your application must delete all the structures that it has created. In
this example, your application must call Vtk_CertDelete,

12

ValiCert Validator Toolkit

Implementing Basic Validation in an Application

Vtk_ValidationDelete, and Vtk_CtxtDelete. See * STEP 7 in sample
application.
Step 8 Release Toolkit resources

When all other functions complete, your application must call the
Vtk_Finish function to release the resources allocated to the Toolkit.
It must call this function only once. See * STEP 8 in sample
application.

Sample Basic Application

The following is a sample application using the Toolkit API to perform an
OCSP or CRT query to the Global VA Service.

/*
* Copyright 2000 ValiCert Inc. All Rights Reserved.

ValiCert Validator Toolkit Sample Program.

This file demonstrates performing common operations with the
ValiCert Validator Toolkit.

L R I

*/

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <assert.h>
#include <string.h>
#include <memory.h>

/*

* Toolkit includes.

*/

#include "vtk_defs.h"
#include "vtk_cert.h"
#include "vtk_error.h"
#include "vtk_ctxt.h"

#include "vtk_valid.h"

/*
* Local function prototypes

*

ValiCert Validator Toolkit 13

Using the Toolkit

/*

* showError

*

* Displays a textual representation of the Validator Toolkit error
*/

void showError(const char *funcName, Vtk_uint32 code);

* showStatus

* Displays textual representation of the passed in validation
* status code.

*/

static void showStatus(Vtk_uint32 status);

/*

* simpleValidation

*

* Performs a simple OCSP or CRT validation check.
i

static void

simpleValidation(enum Vtk_ValidationMech mech, int argc,
char **argv);

* Main - Toolkit sample
*

*/

int main(int argc, char *argv[])

{
Vtk_uint32 retCode;
enum Vtk_ValidationMech valMech;
/*
* Check command line arguments
* usage: vtsample OCSP | CRT userCertFile caCertFile
*
/
if (argc < 4)

{
fprintf(stdout, "\nUsage:\t%s OCSP | CRT userCertFile

caCertFile\n", argv[0]);
exit(-1);
}

if (strcmp(argv[l], "OCSP") == 0)
valMech = VTK_VM_OCSP;

14

ValiCert Validator Toolkit

Implementing Basic Validation in an Application

else if (strcmp(argv[l], "CRT") == 0)
valMech = VTK_VM_CRT;
else

fprintf(stdout, "\nUnsupported validation mechanism.");

fprintf(stdout,
"\nUsage:\t%s OCSP | CRT userCertFile caCertFile\n",
argv[0]);
exit(-1);
}
/*

* Skip over the application name and validation mechanism
* parameters.

i

argc--;

argc--;

argv++;

argv++;

/*

* STEP 1

* |Initialize the Toolkit library.

i

retCode = Vtk_Init();assert(retCode == VTK_OK);

simpleValidation(valMech, argc, argv);

/*

* STEP 8

* Release Toolkit resources.
*/

Vtk_Finish();

return O;
} /* main */

/*

* simpleValidation

*

* Performs a simple OCSP or CRT validation check.

*/

static void

simpleValidation(enum Vtk_ValidationMech mech, int argc, char
**argv)

ValiCert Validator Toolkit

15

Using the Toolkit

Vtk_Ctxt *ctxt;

Vtk_Cert *userCert = NULL, *issuerCert = NULL;
Vtk_Validation *q;

Vtk_uint32 ret, status;

fprintf(stdout, "\n\nPerforming certificate validation using
%s...",
(mech == VTK_VM_OCSP ? "OCSP" : "CRT");

/*

* STEP 2a

* Start by creating a Toolkit context.

i

ctxt = Vtk_CtxtNew();assert(ctxt !'= NULL);

* STEP 2b

* Set appropriate validation mechanism for the context.

* By default, the context is setup with Global Validation

* Authority Service (GVAS) using the CRT protocol.

* If asked to do OCSP, need to change the default protocol.

*/
if (mech == VTK_VM_OCSP)
{
ret = Vtk_CtxtSetDefaultVa(ctxt, VTK_GVAS_URL, VTK_VM_OCSP);
if (ret = VTK_OK)
{
showError("Vtk_CtxtSetDefaultva", ret);
goto done;
}
}
/*
* STEP 3

* Create a Validation structure.
* Validation structures encapsulate validation operation to a VA
* using any of the Toolkit supported validation protocols.
*/
q = Vtk_ValidationNew(ctxt);assert(q);

16 ValiCert Validator Toolkit

Implementing Basic Validation in an Application

/*

* STEP 4a

* Load passed in user and CA certificates.
i

userCert = Vtk_CertNew(ctxt);assert(userCert);
issuerCert = Vtk_CertNew(ctxt);assert(issuerCert);

/*
* STEP 4b
* Populate the certificates with information from specified
* file.
*/
if ((ret = Vtk_CertLoadFromFile(ctxt, userCert, argv[0],
VTK_DF_BASE64)) != VTK_OK)
{
showError("Vtk_CertLoadFromFile", ret);
goto done;
}
if ((ret = Vtk_CertLoadFromFile(ctxt, issuerCert, argv[1],
VTK_DF_BASE64)) != VTK_OK)
{
showError("Vtk_CertLoadFromFile", ret);
goto done;
}
/*
* STEP 5
* Add the passed in certificate to the validation structure.
* For each certificate to be validated the Toolkit requires the
* CA certificate along with the certificate to be validated.
*

This operation can be repeated to add other certificates to be
* validated. Refer to Vtk ValidationAddCertRaw for alternative
* method of suppling the certificate data.

*/
ret = Vtk_ValidationAddCert(ctxt, g, userCert, issuerCert,
NULL);
if (ret = VTK_OK)
{
showError("Vtk_ValidationAddCert", ret);
goto done;
}

ValiCert Validator Toolkit 17

Using the Toolkit

/*
* STEP 6
* Perform the certificate validation.
* The VA specified in the context will be queried
* for the certificate(s) status.
*/
ret = Vtk_ValidationValidate(ctxt, q, &status);
/*
* Display validation values.
*
/
if (ret == VTK_OK)
{
fprintf(stdout, "\n\nValidation succeeded.");
/*
* Display the certificate(s) status.
*/
if (status & VTK_STATUS_OK)
fprintf(stdout, "\nCertificate is valid.");
else
fprintf(stdout, "\nCertificate is not valid.");
/*
* Display detailed information about the performed
* validation.
*/
showStatus(status);
}
else
{
fprintf(stdout, "\n\nValidation failed.");
showError("Vtk_ValidationValidate", ret);
}
done:

18

ValiCert Validator Toolkit

Implementing Basic Validation in an Application

/*
* STEP 7
* Cleanup memory
*/
if (a)
Vtk_ValidationDelete(q);

if (userCert)
Vtk_CertDelete(userCert);

if (issuerCert)
Vtk_CertDelete(issuerCert);

if (ctxt)
Vtk_CtxtDelete(ctxt);
} /* simpleValidation */

/*

* showError

*

* Displays a textual representation of the Validator Toolkit error
*/

static void showError(const char *funcName, Vtk uint32 code)

{

fprintf(stdout, "\n\n*ERROR** in %s - 0x%X (%s)\n\n",
funcName, code, Vtk_ErrorToString(code));
} /* showError */

/*

* showStatus

*

* Displays textual representation of the passed in validation
* status code.

*/

static void showStatus(Vtk_uint32 status)

{

char ** statusStrings;
statusStrings = Vtk_StatusToStrings(status);

/*
* Ensure Vtk_StatusToStrings worked.
*/
if (statusStrings)
{

ValiCert Validator Toolkit

19

Using the Toolkit

char **temp = statusStrings;
fprintf(stdout, "\nValidation Status:");

/*
* Walk through the array of strings returned, printing each
* string, until the end of array is reached - NULL entry.
i
while (*temp)
fprintf(stdout, "\n\t%s", *temp++);

/*
* Release status array.
*/
Vtk_StatusStringsDelete(statusStrings);
}
else
fprintf(stdout,
"\n\n**ERROR - Vtk_StatusToStrings - no status strings
returned\n\n");

} * showStatus */

Extending Validation in Your Application

This section describes tasks that an application can perform to extend its
validation functionality. An application is not required to include these
validation functions. However, these tasks are designed to help you develop
an application with more robust validation functionality. These tasks can be
done using the Toolkit API. Each task is described separately followed by
sample code. The sample code demonstrates how to extend the validation
functionality in your application. The tasks are as follows:

0
o

Creating Context for Local VA

0
o

Communicating with a VA

X3

o

Customizing VA information

0
o

Getting Detailed Revocation Information

0
o

Building and Validating Certificate Chains

X3

o

Getting Extension Information

0
o

Adding Logging

20

ValiCert Validator Toolkit

Extending Validation in Your Application

Creating Context for Local VA

An application can create a context for the local VA. This is useful because
the context uses the Global VA Service as the default VA. To create the
context, your application must perform two tasks:

< Set the default VA using the Vtk_CtxtSetDefaultVa function
< Add certificate to the context to establish trust with the VA.

Code Sample for Creating Context for Local VA
/*
EvaOCSPCixt

Creates a validation context for use with local VA and OCSP.

*
*
*
*
* Parameters:

* evaUrl - url for local VA server for example,
* http://labrador.valicert.com:90

*

*

*

vaCertFile - VA's certificate file (this could be obtained from
file or other means convenient to the application)
*/
static Vtk_Ctxt*
EvaOCSPCtxt(const char *evaUrl, const char *vaCertFile)
{
Vtk_Ctxt *ret = NULL;
Vtk_Cert *vaCert = NULL,;
Vtk_uint32 retCode;

/*

* Create a default Toolkit context.

*/

ret = Vtk_CtxtNew(); assert(ret !'= NULL);

/*

* Customize the context to use OCSP with local EVA.

*/

if ((retCode = Vtk_ CixtSetDefaultVa(ret, evaUrl, VTK_VM_OCSP))

1= VTK_OK)
{
showError("EvaOCSPCtxt - Vtk_CtxtSetDefaultvVa", retCode);
exit(-1);
}

/*

ValiCert Validator Toolkit 21

Using the Toolkit

* Create a Vtk_Cert structure, and read the certificate from
* a file. The certificate can be obtained by any means

* convenient to the application.

i

vaCert = Vtk_CertNew(ret);assert(vaCert != NULL);

if ((retCode = Vtk_CertLoadFromFile(ret, vaCert, vaCertFile,
VTK_DF_BASE64))
1= VTK_OK)

showError("Vtk_CertLoadFromFile", retCode);
Vtk_CertDelete(vaCert);
Vtk_CtxtDelete(ret);
return NULL;
}

/*

* Add the certificate to the context to establish trust with the
* VA

*/

if ((retCode = Vtk_CtxtAddCert(ret, VTK_VA_CERT, vaCert))

1= VTK_OK)
{
Vtk_CtxtDelete(ret);
Vtk_CertDelete(vaCert);
showError("EvaOCSPCtxt - Vtk_CtxtAddCert", retCode);
return NULL;
}
/*

* VA certificate is no longer needed; delete it.
*/
Vtk_CertDelete(vaCert);

return ret;
} I* EvaOCSPCixt */

Communicating with a VA

Typically, communication with the VA is handled by the Toolkit using the
Vtk_ValidationValidate function. With this function, the Toolkit can send
validation queries to one or more VAs to perform validation. The application
can then retrieve validation status using Vtk_ValidationGetRevStatus or
Vtk_ValHdIGetRevStatus (if the Vtk_ValHdl auxiliary structure is obtained for
the certificate).

22 ValiCert Validator Toolkit

Extending Validation in Your Application

Under some circumstances, you may want your application to handle the
communication with the VA instead of the Toolkit. Some of the reasons your
application should handle the communication with the VA are as follows:

% to use SSL for the communication with the VA

% to use asynchronous I/O with the VA

< to use your own source of validation responses or CRLs

The Toolkit imposes no restrictions on how the application handles the
communication with the VA. Instead, the Toolkit provides the
Vtk_ValidationGetQueries function with the Vtk_ValQuery structure for the

application to obtain the validation queries to be sent to the VA and provides
the Vtk_ValidationFromQueries to check the information in the responses.

m NoTE: The application is responsible for releasing the
memory occupied by the response buffers.

Code Sample for Communicating with VA

This code sample demonstrates certificate validation when the application
handles the communication with VA.

/*

* QueryValidation

*

*

* Parameters:

* pCitxt - pointer to Toolkit context

* pUserCert - user certificate to be validated
*

*

plssuerCert - issuer certificate of the user certificate
*/

void QueryValidation(Vtk_Ctxt *pCtxt, const Vtk_Cert *pUserCert,
const Vtk_Cert *plssuerCert)
{
Vtk_Validation *pVal = NULL;
Vtk_uint32 ret, status;
Vtk_ValQuery **ppValQueries = NULL;
int valQueryCount;
int i

ValiCert Validator Toolkit 23

Using the Toolkit

/*

* Create a Validation structure.

* Validation structures encapsulate the validation query sent to

* the VA. The application can send the query using any of the
* supported validation protocols.

*/

pVal = Vtk_ValidationNew(pCtxt);assert(pVal);

/*
* Add the passed in certificate to the validation structure.
* For each certificate to be validated, the Toolkit requires the
* CA certificate as well as the certificate to be validated.
*
* An application can repeat this operation to add other
* certificates to the validation structure.
*/
ret = Vtk_ValidationAddCert(pCtxt, pVal, pUserCert, plssuerCert,
NULL);
if (ret 1= VTK_OK)
{
showError("Vtk_ValidationAddCert", ret);
goto done;

}

/*
* Vtk_ValidationGetQueries
*
* Obtains an array of validation query messages to allow the
* application instead of the Toolkit to perform the /0 with the
* VA. The application should set the response field for each
* query. The returned array should be deleted using
* Vtk_ValQueriesDelete.

*/
ret = Vtk_ValidationGetQueries(pCtxt, pVal, &valQueryCount,
&ppValQueries);
if (ret = VTK_OK)
{
showError("Vtk_ValidationGetQueries", ret);
goto done;
}
/*
* Set Response field for each valQuery
*/
for (i=0; i<valQueryCount; i++)
{
/*

24 ValiCert Validator Toolkit

Extending Validation in Your Application

* Get Response from VA - using application's communication
function. This function will use data such as host, port,
and request obtained using the Vtk_ValidationGetQueries
function to get response from the VA.

*

*

E o

Application is responsible for deleting memory occupied by
response member of validation query which is set by the

* GetVAResponse function.

* Note : Function GetVAResponse is not part of the Toolkit.
* An application must provide such a function that

* would handle the communication with the VA.

i

ret = GetVARepsonse(ppValQueries[i]->host,
ppValQueries[i]->port,ppValQueries[i]->request,
&(ppValQueries[i]->response));
if (ret I= VTK_OK)
{
showError("Vtk_ValidationGetQueries", ret);
goto done;

/*

* Vtk_ValidationValidateFromQueries

*

* Validates response obtained from VA

*/

ret = Vtk_ValidationValidateFromQueries(pCtxt, pVal,

ppValQueries, &status);

if (ret I= VTK_OK)

{
showError("Vtk_ValidationValidateFromQueries", ret);
goto done;

=

*

IMPORTANT

At this point, the application would continue processing
validation results such as display, store, or would call
another function

EE

*

*/

done:

ValiCert Validator Toolkit 25

Using the Toolkit

/*
* Cleanup memory
*/

/*

Application is responsible for deleting memory occupied by
validation queries and the response part of each

query obtained by the GetVAResponse function, which handles
the communication with the VA.

*

*

*/
if (ppValQueries)

{

for (i=0; i<valQueryCount; i++)

{
if (ppValQueries|i]->response.dPtr)

{

free(ppValQueries[i]->response.dPtr);
ppValQueries|i]->response.dPtr = NULL;
}

}

Vtk_ValQueriesDelete(ppValQueries);
}

if (pval)
Vtk_ValidationDelete(pVal);

} /* QueryValidation */

Customizing VA information

You can customize validation information about the VA that is validating
certificates issued by specific CAs. Customizing this information allows an
application to contact different VAs for the CAs.

You can use the Vtk_CtxtSetValnfo function to set the validation information.
The VA validation information includes the VA URL, validation mechanism
and optionally, the list of trusted VA certificates to be used with the VA.

m NOTE: If you do not set the list of trusted VA certificates using
the Vtk_CtxtSetValnfo function, you must set the list through
the Vtk_CtxtAddCert or Vtk_CtxtAddCerts functions.

26 ValiCert Validator Toolkit

Extending Validation in Your Application

The VA URL and validation mechanism specified in the Vtk_CtxtSetValnfo
function will be used as the default for all validations performed for certificates
issued by this CA. If you specify CRL as the validation mechanism, you must
also set details about the protocol in the Vtk_ProtocolDetails structure.

Code Sample for Customizing VA Information

The following code sample demonstrates how to customize VA information for
a specific CA. It includes information for the OCSP, CRT and CRL validation

mechanisms.

/*

* SetVAForSpecificCA

*

* Parameters:

* pCtxt - pointer to Toolkit context

* pCaCertl - CA certificates for which specific VA will be set

* pCaCert2

* pCacCert3

* vaUrll - URL of the OCSP VA, for example:
http://ocsp.valicert.net:80/

* vaUrl2 - URL of the CRT VA, for example:
http://ci.valicert.net:80/

* vaUrl3 - URL of the CRL VA, for example:

http://testlab/crl_test/testlab.crl
* pVaCerts - certificate store with trusted VA certificates

int SetVAForSpecificCA(Vtk_Ctxt *pCtxt, const Vtk_Cert *pCaCertl,
const Vtk_Cert *pCaCert2, const Vtk_Cert *pCaCert3,
const char *vaUrll, const char *vaUrl2,
const char *vaUrl3, const Vtk_CertStore *pVaCerts)

{
Vtk_uint32 ret;
enum Vtk_ValidationMech mech;
Vtk_ProtocolDetails protocol;
/*
*
* This call sets the validation information specific to an
* individual CA. The VA is using OCSP protocol - Protocol Details
* need not to be provided. The VA certificate must in the with
*

trusted VA certificates store, pVaCerts

*

*

*

ValiCert Validator Toolkit 27

Using the Toolkit

mech = VTK_VM_OCSP;
ret = Vtk_CtxtSetValnfo(pCtxt, pCaCertl, vaUrll, mech, NULL,

pVacCerts);
{
showError("Vtk_CtxtSetValnfo", ret);
return -1;
}
/*
*
* This call sets the individual VA information (in this case -
* CRT validation mechanism for CA represented by certificate
* pCaCert2. VA certificate is in this case provided in following
* function Vtk_CtxtAddCerts.
*
*/
mech = VTK_VM_CRT;
ret = Vtk_CtxtSetValnfo(pCtxt, pCaCert2, vaUrl2, mech, NULL,
NULL);
{
showError("Vtk_CtxtSetValnfo", ret);
return -1;
}
ret = Vtk_CtxtAddCerts(pCtxt, VTK_VA_CERT, pVaCerts);
{
showError("Vtk_CtxtAddCerts", ret);
return -1;
}
/*
*
* This call sets the individual VA information for CA represented
* by certificate pCaCert2. Since VA is using CRL validation
* mechanism, protocol details must be provided.
*
*
* VA certificate is already set in the context through
* Vtk_CtxtAddCerts function.so it need not be set in this call.
*
*/

protocol.type = VTK_VM_CRL;
protocol.d.crl.encoding = VTK_DF_DER;
protocol.d.crl.type = VTK_DT_CRL;

ret = Vtk_CtxtSetValnfo(pCtxt, pCaCert3, vauUrl3, VTK_VM_CRL,
&protocol, NULL);

28 ValiCert Validator Toolkit

Extending Validation in Your Application

{
showError("Vtk_CtxtSetDefaultva", ret);
return -1;

}

return O;

}

Getting Detailed Revocation Information

The Toolkit allows an application to retrieve detailed revocation information for
a single certificate using either the Vtk ValidationGetRevStatus or
Vtk_ValHdIGetRevStatus validation function. The application can request
detailed revocation information for the entire validation response or a single
certificate. The detailed revocation information is returned in the
Vtk_ValRespDetails or Vtk_ValRespSingleCertDetails structure.

To use the Vtk_ValHdIGetRevStatus function, an application can add a
certificate to the validation query with a validation handle using
Vtk_ValidationAddCert or Vtk_ValidationAddCertRaw functions. Alternatively,
the application can use the Vtk_ValidationGetValHdI function.

If the application requests detailed revocation information (either respDetails
or certDetails) but this information is not available in the response, the
function returns VTK_OK, but the return values in the structure are not set.

Code Sample for Obtaining Revocation Information

The following code sample shows how to obtain revocation information after
certificate validation.

>

*

* GetRevocationiInfo

* Parameters:

* pCitxt - pointer to Toolkit context

* pUserCert - certificate which will be validated
*

plssuerCert - issuer certificate of the user certificate

*
~

void GetRevocationinfo(Vtk_Ctxt *pCtxt, const Vtk_Cert *pUserCert,
const Vtk_Cert *plssuerCert)
{

Vtk_Validation *pVal = NULL;

Vtk_uint32 ret, status;

ValiCert Validator Toolkit 29

Using the Toolkit

Vtk_ValHdl *pHdl = NULL;

/*

* Create a Validation structure.

* Validation structures encapsulate the validation query sent to

* the VA. The application can send the query using any of the
* supported validation protocols.

i

pVal = Vtk_ValidationNew(pCtxt);assert(pVal);

/*

* Add the passed in certificate to the validation structure.
For each certificate to be validated, the Toolkit requires the
* CA certificate as well as the certificate to be validated.

*

* The function will also set the validation handle (Vtk_ValHdl)
* which can be used to obtain validation details for user
* certificates.
*
*/
ret = Vtk_ValidationAddCert(pCtxt, pVal, pUserCert, plssuerCert,
&pHdI);
if (ret = VTK_OK)
{
showError("Vtk_ValidationAddCert", ret);
goto done;

}

/*

* Vtk_ValidationValidate

*

* Performs certificate validation.

*/

ret = Vtk_ValidationValidate(pCtxt, pVal, &status);
if (ret 1= VTK_OK)

{
showError("Vtk_ValidationValidate", ret);
goto done;

}

/*

* Displays validation response details using the validation
* handle, that is, the Vtk_ValHdl structure.

*/

displayValidationDetailsHdI(pCtxt, pHdI, pVal);

30 ValiCert Validator Toolkit

Extending Validation in Your Application

/*
IMPORTANT

L

Alternatively, if the validation handle is not available, an
application can get validation details using the user and
* issuer certificate pair.

*/

displayValidationDetails(pCtxt, pVal, pUserCert, plssuerCert);

done:

/* Cleanup memory */

if (pval)
Vtk_ValidationDelete(pVal);
if (pHdI)
Vtk_ValHdIDelete(pHdl);
}
/*

* displayValidationDetailsHdlI

*

Displays validation response details using the validation
handle, that is, the Vtk_ValHdl structure.

E

The Vtk_ValHdl is used to obtain detailed validation information
for a particular certificate in the validation query.

The Vtk_ValRespDetails structure details revocation information
for the entire validation response. It includes header
information common to all responses and header information

E

* gpecific to the OCSP, CRT, or CRL protocol.

*

* The Vtk_ValRespSingleCertDetails structure represents validation
* information for a specific certificate.

*

* Parameters:

* pCtxt - pointer to Toolkit context

* pHdI - validation handle which identifies the

* certificate

* pVal - pointer to validation query structure that
* contains the validated user certificate
*

*/

ValiCert Validator Toolkit 31

Using the Toolkit

void displayValidationDetailsHdI(const Vik_Ctxt *pCtxt,
const Vtk_ValHdl *pHdI, const Vtk_Validation *pVal)
{
Vtk_ValRespDetails *hdr = NULL,;
Vtk_ValRespSingleCertDetails *certDetails = NULL;
Vtk_uint32 ret, status;

assert(pHdl);

/*

* Obtain validation details using a validation handle. The

* validation handle can be created using the

* Vtk_ValidationAddCert, Vtk_ValidationAddCertRaw, or the

* Vtk_ValidationGetValHdIfunction.

*

*/

if ((ret = Vtk_ValHdIGetRevStatus(pCtxt, pHdl, &status, &hdr,
&certDetails)) = VTK_OK)

{
showError("Vtk_ValHdIGetRevStatus", ret);
return;

}

if (hdr)

{
/* Print Validation Header information. */
printRespHdr(hdr);
Vtk_ValRespDetailsDelete(hdr);

}

if (certDetalls)

{
/* Print single certificate validation information. */
printRespCertDetails(certDetails);
Vtk_ValRespSingleCertDetailsDelete(certDetails);

}
return;
}
/*
* displayValidationDetails
*
* Display validation response details using the user and issuer
*

certificate pair.

*

32 ValiCert Validator Toolkit

Extending Validation in Your Application

* Parameters:

* pCitxt - pointer to Toolkit context

* pVal - pointer to validation query structure that
* contains validated user certificate

* pUserCert - user certificate

* plssuerCert - issuer certificate

*/

void displayValidationDetails(const Vtk_Ctxt *pCtxt,
const Vtk_Validation *pVal, const Vtk_Cert *pUserCert,
const Vtk_Cert *plssuerCert)

Vtk_ValRespDetails *hdr = NULL,;
Vtk_ValRespSingleCertDetails *certDetails = NULL;
Vtk_uint32 ret, status;

assert(pUserCert);
assert(plssuerCert);

/*
* Obtain validation details using the certificate pair.
*/
if ((ret = Vtk_ValidationGetRevStatus(pCtxt, pVal, pUserCert,
plssuerCert, &status, &hdr, &certDetails)) = VTK_OK)
{
showError("Vtk_ValidationGetRevStatus”, ret);
return;

if (hdr)

{
/* Print Validation Header information. */
printRespHdr(hdr);
Vtk_ValRespDetailsDelete(hdr);

}

if (certDetails)

{
/* Print single certificate validation information. */
printRespCertDetails(certDetails);
Vtk_ValRespSingleCertDetailsDelete(certDetails);

}

return;

ValiCert Validator Toolkit 33

Using the Toolkit

/*
* Display contents of a Vtk_ValRespDetails structure
*/
void printRespHdr(const Vtk ValRespDetails *hdr)
{
const char* protocols[] = { "CRT", "OCSP", "CRL" };
char *issuer;

/*

* Print Validation Header information.

*/

printf("\nValidation response Header...");

printf("\n\tProtocol %s,", protocols[hdr->type - 1]);

printf("\n\tVersion: %d,\t Issue time: %s", hdr->version,
ctime(&hdr->issueTime));

/*
* Either the issuerldByName or issueridByKey will be set.
*/
if (hdr->issuerldByName)
issuer = (char*)hdr->issuerldByName->dPtr;
else
issuer = (char*)hdr->issuerldByKey->dPtr;

printf("\tlssuer: %s", issuer);

/*
* Display additional, protocol specific details.
*/
if (hdr->type == VTK_VM_CRT)
{
printf("\n\tCRT next update: %s",
ctime(&hdr->d.crt->nextUpdate));
printf("\tCRT valid until: %s",
ctime(&hdr->d.crt->validUntil));

}

/*

* Print contents of a Vtk_ValRespSingleCertDetails structure.

*/

void printRespCertDetails(const Vtk_ValRespSingleCertDetails
*certDetails)

{

printf("\nSingle certificate details...");

if (certDetails)

34 ValiCert Validator Toolkit

Extending Validation in Your Application

printf("\n\tThis update: %s",
(certDetails->thisUpdate == -1 ? "not specified" :
ctime(&certDetails->thisUpdate)));
printf("\tNext update: %s",
(certDetails->nextUpdate == -1 ? "not specified" :
ctime(&certDetails->nextUpdate)));

/*
* If this certificate is revoked, there may be additional
* information.
i
if (certDetails->certStatus & VTK_STATUS_REVOKED)
{
/*
* revocation time is optional parameter -1 means not set
*/
if (certDetails->revocationTime != -1)
printf("\n\tRevocation time: %s",
ctime(&certDetails->revocationTime));

/* revocation reason is optional field -1 means not set */
if (certDetails->revocationReason
I= VTK_REV_STATUS_UNKNOWN)
printf("\tRevocation reason: %d",
certDetails->revocationReason);
else
printf("\tRevocation reason not specified.");

}

printf("\n\n");

Building and Validating Certificate Chains

A certificate chain is a hierarchy of certificates that lead to a trusted certificate,
usually a CA's certificate. The purpose of the certificate chain is to allow a
sender to establish trust with the recipient. Within the Toolkit, an application
can build a chain using the Vtk_ValidationAddCertChain function. This
validation function builds a certificate chain for the specified certificate and
adds all the certificates to the validation query.

ValiCert Validator Toolkit 35

Using the Toolkit

The CA certificates stored in the Vtk_Ctxt are used while constructing the
chain using the Vtk_ValidationAddCertChain function. When an application
calls this function, the application can use Vtk_ChainBuildCallback function to
provide a function pointer that will be called every time the Toolkit discovers a
new link in the certificate chain.

Certificates in a certificate chain are either from the intermediate certificate
store or the trusted certificate store. Certificates in the intermediate certificate
store are not the highest certificate in the certificate hierarchy. However, an
application can trust the intermediate certificate and discontinue building a
certificate chain or continue building the certificate chain until a certificate that
the application is satisfied to trust, usually one from the trusted certificate
store, has been encountered.

Code Sample for Building and Validating Certificate Chain

This sample demonstrates how to validate the entire certificate chain for the
specified certificate.

/*
* ChainValidation
*
* Parameters:
* pCitxt - pointer to Toolkit context
* pUserCert - user certificate to be validated
* pCAsFile - name of the file with trusted CA
* certificates in Base64 format.
*

*/

int ChainValidation(Vtk_Ctxt *pCtxt, const Vtk_Cert *pUserCert,
const char *pCAsFile)
{
Vtk_CertStore *pCaStore = NULL;
Vtk_Validation *pVal = NULL;
Vtk_uint32 ret, status;

/*

* Create a validation structure.

* Validation structures encapsulate validation operation to a VA
* using any of the toolkit supported validation protocols.

*/

pVal = Vtk_ValidationNew(pCtxt);assert(pVal);

36

ValiCert Validator Toolkit

Extending Validation in Your Application

/*

* |nitialize structures for certificate store

* with trusted CA certificates.

*/

pCaStore = Vtk_CertStoreNew(pCtxt);assert(pCaStore);

/*

* Load trusted CA certificates from specified files.

*/

if ((ret = Vtk_CertStoreLoadFromFile(pCtxt, pCaStore, pCAsFile,
VTK_DF_BASE64)) = VTK_OK)

{
Vtk_CertStoreDelete(pCaStore);
Vtk_ValidationDelete(pVal);
showError("Vtk_CertStoreLoadFromFile", ret);
return -1;

}

/*

* This call adds certificates to the list of trusted

* certificates. These can be VA or CA certificates, or both.

*/
ret = Vtk_CtxtAddCerts(pCtxt, VTK_TRUSTED_CA_CERT, pCasStore);
Vtk_CertStoreDelete(pCaStore);pCaStore = NULL;
if (ret != VTK_OK)

{
showError("Vtk_CtxtAddCerts", ret);
Vtk_ValidationDelete(pVal);
return -1;

}

/*

* Vtk_ValidationAddCertChain

*

* This call builds a certificate chain for the specified
* certificate and adds all the certificates to the validation
* structure. The CA certificates stored in the Vtk_Ctxt are used
* while constructing the chain.
i
ret = Vtk_ValidationAddCertChain(pCtxt, pVal, pUserCert, NULL,
NULL);
if (ret 1= VTK_OK)
{
showError("Vtk_ValidationAddCert", ret);
Vtk_ValidationDelete(pVal);
return -1;
}

ValiCert Validator Toolkit 37

Using the Toolkit

/*

* Vtk_ValidationValidate

*

* Performs the certificate validation

*/

ret = Vtk_ValidationValidate(pCtxt, pVal, &status);
if (ret 1= VTK_OK)

{
showError("Vtk_ValidationValidate", ret);
Vtk_ValidationDelete(pVal);
return -1;
}
/*
* IMPORTANT
* At this point the application would continue processing
*

validation results such as display, store, or call another
* function.
*/

Vtk_ValidationDelete(pVal);
return O;
} /* ChainValidation */

Getting Extension Information

Your application can get information about certificate extensions for a specific
certificate. Your application can do this by first getting a list of extensions
using the Vtk_CertGetExtensions function which returns a Vtk_Extensions
structure for the certificate. This structure contains the list of extensions that
can be parsed using several of the extension functions. It represents X.509
extensions used in certificates, CRLs, and the OCSP and CRT protocols.

An application can obtain this structure using the Vtk_CertGetExtensions
function or from the Vtk_ValRespDetails or Vtk_ValRespSingleCertDetails
structure returned by the Vtk_CRLValidateCert, Vtk ValidationGetRevStatus
and Vtk ValHdIGetRevStatus functions.

The Toolkit provides several other functions that allow your application to
parse the Vtk_Extensions structure and return the following:

< number of extensions in the list

3

% extension in the list based on its OID

o

* extension based on its position in the extension list

38 ValiCert Validator Toolkit

Extending Validation in Your Application

These search functions can be used to search a list of any type of extensions,
that is certificate, OCSP, CRT, or CRL extensions.

The Vtk_ExtensionGetByOID can be used to search for a specific Object
Identifier (OID) in the list of extensions currently in Vtk_Extensions structure.
The OID can be specified in dot notation. The application must call
Vtk_ExtensionDelete when finished with the returned structure, otherwise
memory leaks and other problems can occur.

The Vtk_ExtensionsGetCount function can be used to determine the number
of extensions currently in the Vtk_Extensions structure for the specified
context. This function can be used to search a list of any type of extensions,
that is certificate, OCSP, CRT, or CRL extensions.

The Vtk_ExtensionsGetith function can be used to search for a specific
occurrence of an extension within the list of extensions currently in
Vtk_Extensions structure. The application must call Vtk_ExtensionDelete
when finished with the returned structure, otherwise memory leaks and other
problems can occur.

m NoOTE: The Vtk_ExtensionsGetith function adds a comment,
enclosed by parentheses, to the OID. For example:

2.5.29.15(X509v3 Key Usage)

If you use the Vtk_ExtensionGetByOID function to search the
extensions list, be sure that the OID does not contain a
comment.

ValiCert Validator Toolkit 39

Using the Toolkit

Code Sample for Getting Extension Information

This code sample demonstrates how to process extensions, get the number
of extensions in the extension container, and access individual extensions in
the extension container.

/*

* Extensions

*

*

* Parameters:

* pCitxt - pointer to Toolkit context

* pExtensions - container for extensions; this can certificate,

* OCSP,CRT or CRL extensions; You can obtain
* certificate extensions by calling

* Vtk_CertGetExtensions. The OCSP/CRT/CRL
* extensions are part of the Vtk_ValRespDetails
* and Vtk_ValRespSingleCertDetails data

* structures.

i

void Extensions(const Vtk_Ctxt *pCtxt, const Vtk_Extensions
*pExtensions)
{

Vtk_uint32 ret;

Vtk_Buffer oidBuf;

char oid[12] = "2.5.29.31";

Vtk_Extension *pFoundExt = NULL;

int i

int NNumExt;

Vtk_Extension *pExt;

/*
* Print OID of all certificate extensions
*/

/*
* Get Number of extensions
*/
nNumExt = Vtk_ExtensionsGetCount(pCtxt, pExtensions);

/*
* Print OID part of each extension
i

for (i=0; i<nNumExt; i++)

{

40 ValiCert Validator Toolkit

Extending Validation in Your Application

/*
* Get next extension from extension container
*
* Application is responsible for deleting extension obtained by
* function Vtk_ExtensionsGetith
*/
pExt = NULL;
ret = Vtk_ExtensionsGetith(pCtxt, pExtensions, i, &pExt);
if (ret = VTK_OK)
{
showError("Vtk_ExtensionsGetith", ret);
return;
}
/*
* Print out the OID
i
if (pExt)
{

/*

* Release current extension

*/
Vtk_ExtensionDelete(pExt);

printf("/nOid: %s", pExt->oid.dPtr);

}
/*
* Search for specific extension - 2.5.29.31 (CRL Distribution
* Points)
*/
oidBuf.type = VTK_DF_STRING;
oidBuf.dPtr = (unsigned char *) oid;
oidBuf.len = strlen(oid);

ret = Vtk_ExtensionGetByOid(pCtxt, pExtensions, &oidBuf,
&pFoundExt);
if (ret 1= VTK_OK)
myPrintf("\nExtension not found .\n");

/*
* IMPORTANT
*
* Application continues using the extension it has found.
*/
/*
* Application is responsible for deleting found extension
*/

if (pFoundExt)
Vtk_ExtensionDelete(pFoundExt);

ValiCert Validator Toolkit 41

Using the Toolkit

Adding Logging

Your application can include logging of important Toolkit activity. The ability to
provide activity logs in an external file is helpful for debugging,
troubleshooting, performance-tuning and as a history-maintenance tool for
Toolkit users. Logging functions record specific Toolkit actions and any errors
that are encountered.

By default, logging information is stored in an ASCII text file that can be
viewed with any text editor.

You can also customize logging to take advantage of any existing logging
capabilities in your application, for example you may want to write log
messages to a database or to the system log facilities.

Toolkit stores several types of log records which are also use indicate logging
levels. Toolkit functions store these types of log records:

0
o

Error logs—display any encountered error or warning.

3
X4

Information logs—provide description and status of key Toolkit activities.

< Debug logs—provides information which usually accompanies an error
message for example the value of some variables when an error occurred
or information about each successfully called function.

0
o

Validation logs—provide data that is either request data sent to a VA or
response data received from a VA.

Specifying a level of logging turns on the levels below it, for example if you
specify Debug logs, Debug, Information, and Error logs will be recorded.

Code Samples For Adding Logging

The following code sample demonstrates how to use the default Toolkit
logging functionality in your application
/*
* InitLog
* |Initializing and starting logging activity in application
*/
Vtk_uint32 InitLog(Vtk_Ctxt *pCtxt)
{
Vtk_LogOptions logOpts;
Vtk_uint32 ret;

/*
* Default Toolkit Logging
* |Initialize logging options structure:

42

ValiCert Validator Toolkit

Extending Validation in Your Application

* Log Level - log all error, info, debug and validation messages
* Log Mode - overwrite old log file, no flushing after each
message
* Log File Name - use default log file name (vc_toolkit.log)
*/
logOpts.logLevel = LOG_VaData;
logOpts.logMode = VTK_LOG_MODE_DEFAULT | VTK_LOG_MODE_OVERWRITE;
logOpts.logFileName.type = VTK_DF_STRING;
logOpts.logFileName.dPtr = NULL;
logOpts.logFileName.len = 0O;
logOpts.openLogCB = NULL;
logOpts.closeLogCB = NULL;
logOpts.writeLogCB = NULL,;

/*

* Open Log

*/

if ((ret = Vtk_OpenLog(pCtxt, &logOpts)) != VTK_OK)
showError("InitLog", ret);

/*
* IMPORTANT

*
* From now on until the function Vtk_CloseLog is called, all
* Toolkit messages (error, info, debug, validation) will be

logged
* into text file vc_toolkit.log

*

* Application should call Vtk_CloselLog function to stop logging

*

*

return ret;

The following code sample demonstrates how an application can provide an
alternate way to process logging messages. In this example error, info and
debug messages are written in the file messages.log , while validation data
(VA requests and responses) are written in the file va_data.log

/*
* Logging structure
*/

typedef struct

{

ValiCert Validator Toolkit 43

Using the Toolkit

FILE *pMsgFile; /* file stream for error, info and debug
messages */

FILE *pVaDataFile; /* file stream for validation data */
} MyLoginfo;

* InitLog

* |Initializing and starting logging activity in application
*/
Vtk_uint32 InitLog(Vtk_Ctxt *pCtxt)
{
Vtk_LogOptions logOpts;
Vtk_uint32 ret;

/*

* Alternative Toolkit Logging

* Initialize logging options structure:

* Log Level - log all error, info, debug and validation messages
* Set callback functions

*/

logOpts.logLevel = LOG_VaData;
logOpts.logMode = VTK_LOG_MODE_DEFAULT;
logOpts.logFileName.type = VTK_DF_STRING;
logOpts.logFileName.dPtr = NULL;
logOpts.logFileName.len = 0;
logOpts.openLogCB = MyOpenLog;
logOpts.closeLogCB = MyCloselog;
logOpts.writeLogCB = MyWritelLog;

/* Open Log */
if ((ret = Vtk_OpenLog(pCtxt, &logOpts)) != VTK_OK)
showError("InitLog", ret);

/*

* IMPORTANT

*

* From now on until the function Vtk_CloseLog is called, all

* Toolkit messages (error, info, debug, validation) will be
logged

* in log files (as defined in MyWriteLog callback function)

*

* Application must call Vtk_CloselLog function to stop logging
and

* release alocated resources

*

*

44 ValiCert Validator Toolkit

Extending Validation in Your Application

return ret;

/*
* MyOpenLog
*
* Callback function for initializing the alternative logging
*/
Vtk_uint32 VTK_CALLBACK MyOpenLog(const Vtk Ctxt *pCtxt, void
**userHdl)
{
MyLogInfo *pLoginfo;
*userHdl = NULL;

/*
* Allocate memory for alternative logging structure
*
/
if ((pLogIinfo = (MyLogInfo *) malloc(sizeof(MyLoglInfo))) ==
NULL)
return VTK_ERR_OUT_OF_MEMORY;

/*
* Init MyLogInfo structure with pointers to file streams
*/
if ((pLoglnfo->pMsgFile = (FILE *)fopen("messages.log”, "w")) ==
NULL)
{
free(pLoglinfo);
return VTK_ERR_OPEN_LOG_FILE;
}
if ((pLogInfo->pVaDataFile = (FILE *)fopen("va_data.log", "w"))
== NULL)
{
fclose(pLoginfo->pMsgFile);
free(pLoglinfo);
return VTK_ERR_OPEN_LOG_FILE;
}

/*

* Pass pointer to application’s logging structure in userHdl
variable

*/

*userHdl = pLoginfo;

return VTK_OK;

ValiCert Validator Toolkit 45

Using the Toolkit

/*

* MyCloselLog

*

* Callback function for closing the alternative logging

*/

void VTK_CALLBACK MyCloseLog(const Vtk_Ctxt *pCtxt, void* userHdl)

{
MyLoglInfo *pLoglnfo;

if (luserHdl)
return;

/*
* Write final logging message
*
/
Vtk_WriteLog(pCtxt, LOG_Info, "Closing log files ...");

/*

* Close both log file streams

*/

pLoginfo = (MyLoglInfo *) userHdl;
fclose(pLoglnfo->pMsgFile);
fclose(pLoglnfo->pVaDataFile);

/*

* Release memory allocated for MyLoginfo structure
i

free(pLoglinfo);

return;

/*
* MyWriteLog
*
* Callback function for alternative processing (storing) of
logging messages
*
/
void VTK_CALLBACK MyWriteLog(const Vtk_Ctxt *pCtxt,
enum Vtk_CtxtLogType type, const char *pMsg, void*
userHdl)
{
struct tm *tmptr;
struct timeb timebuffer;
MyLoglinfo *pLoglnfo;
char typeStr[5] = " "

46 ValiCert Validator Toolkit

Extending Validation in Your Application

if (luserHdl)
return;

pLoginfo = (MyLoglInfo *) userHdl;

/*

* Set mesage type prefix

*/

if (type == LOG_Error)
strepy(typeStr, "ERR");

else if (type == LOG_Info)
strepy(typeStr, "INF");

else if (type == LOG_Debug)
strepy(typeStr, "DBG");

else if (type == LOG_VaData)
strcpy(typeStr, "VAD");

/*

* Get current time

*/
ftime(&timebuffer);

tmptr = localtime(&(timebuffer.time));

if (type == LOG_Error || type == LOG_Info || type == LOG_Debug)
fprintf(pLogInfo->pMsgFile,
"%04d/%02d/%02d %02d:%02d:%02d.%03hu %s: %s\n",
tmptr->tm_year+1900, tmptr->tm_mon+1, tmptr-
>tm_mday,
tmptr->tm_hour, tmptr->tm_min, tmptr->tm_sec,
timebuffer.millitm, typeStr, pMsg);
else
fprintf(pLoglInfo->pVaDataFile,
"%04d/%02d/%02d %02d:%02d:%02d.%03hu %s: %s\n",
tmptr->tm_year+1900, tmptr->tm_mon+1, tmptr-
>tm_mday,
tmptr->tm_hour, tmptr->tm_min, tmptr->tm_sec,
timebuffer.millitm, typeStr, pMsg);

return;

ValiCert Validator Toolkit

47

Using the Toolkit

T i T
M T
M

48 ValiCert Validator Toolkit

Implementing Specialized Validation Processing

Implementing Specialized Validation Processing

This section describes very specialized tasks that an application can perform
to further enhance its validation functionality. An application is not required to
include these validation functions. Most applications will not implement this
functionality. These tasks can be done using the Toolkit API. Each task is
described separately followed by sample code. The sample code
demonstrates how an application can implement the specialized functionality.

The tasks are as follows:

< Producing Signed Requests

< Checking Delegated VA Certificates

< Setting Proxy Information

< Adding OCSP Extensions

< Getting Validation Handle for Specific Certificate

Producing Signed Requests

OCSP optionally allows an application to produce signed requests. For an
environment that requires signed requests, your application needs to:

< Customize the context
< Implement a signing callback

A context is the global Toolkit environment that your application creates using
the Vtk_CtxtNew function. Typically, a single context is created in the start-up
code of the application, it sets configuration values, and is used in all
subsequent function calls for the Toolkit. Your application must customize the
context with requestor signing information. It can add this functionality for
handling signed requests by calling the Vtk_CtxtSetOption function and
setting the Vtk_OCSPSignlinfo structure in the context. This structure supplies
a signing function callback and signer information to be included in the
request. This structure is used only if the option CO_OCSPSigninfo is
specified as the value for the Vtk_CtxtOptionType enumeration which defines
configuration option types for a Vtk_Ctxt structure. Configuration options can
be configured using the Vtk_CtxtSetOption function and can be retrieved
using the Vtk_CtxtGetOption function.

ValiCert Validator Toolkit 49

Using the Toolkit

Your callback function performs the actual signing. The
Vtk_OCSPSignCallBack function enables the application to add signatures to
the outgoing requests. The parameters include the following:

0
o

userHdl—Parameter that the Toolkit passes. The application provides this
parameter.

< digest—DER encoding of hashed data bytes, that is, the data to be
signed.

< sigout—Buffer that the Toolkit allocates for the application to store the
resulting signature. The application uses the length parameter to set the
size of the signature written.

0
o

maxSigOutBuf—Size of the sigOut buffer allocated by the Toolkit.

.

3
"’

padding—Type of padding the Toolkit requires. Type 1 padding indicates
that the Toolkit requires PKCS#1 padding.

When the Toolkit gets to the point of its processing where OCSP signing
occurs, the Toolkit calls the call back the application has specified. The
application will then create the signature on the token.

Once the application completes its processing, it needs to return VTK_OK to
indicate that the OCSP signature has been added and the Toolkit can
continue with its processing. If the application encounters an error when it
tries to create the signature, it needs to return any nonzero value to terminate
the operation and stop the Toolkit from creating the request.

Code Sample for Customizing a Context

The following sample function shows how to create a Vtk_Ctxt structure and
customize it for an environment that requires signed requests.

/*

* myOCSPRequestSignCallbackFunction

*

* Callback function for producing signed OCSP requests.

*/

int VTK_CALLBACK myOCSPRequestSignCallbackFunction(void* userHdl,
Vtk_Buffer *digest, Vtk_ Buffer *sigOut,
int maxSigOutBuf, int padding);

50 ValiCert Validator Toolkit

Implementing Specialized Validation Processing

* SignCtxtCreate

Creates a Toolkit Context configured for signing of OCSP
requests.

Parameters:
* signCert - the signer's certificate
* appData - application specific data to passed to the callback

static Vtk_Ctxt* SignCtxtCreate(Vtk_Cert *signCert,
struct my_sign_st *appData)
{
Vtk_Ctxt *ctxt = NULL;
Vtk_uint32 retCode;
Vtk_CtxtOption ctxtOption;
Vtk_OCSPSigninfo signinfo;

/*

* Create default Toolkit context

*/

if ((ctxt = Vtk_CtxtNew()) == NULL)
return NULL;

/*

* Setup the request signing callback information for the

* context.

*/

signinfo.OCSPSignCB = myOCSPRequestSignCallbackFunction;
signinfo.signerCert = signCert;

signinfo.userHdl = (void*)appData; /* any application data */
ctxtOption.option = CO_OCSPSigninfo;

ctxtOption.d.aSigninfo = &signinfo;

if ((retCode = Vtk_ CtxtSetOption(ctxt, &ctxtOption)) = VTK_OK)

{
showError("Vtk_CtxtSetOption - CO_OCSPSigninfo", retCode);
Vtk_CtxtDelete(ctxt);
return NULL;

}

return NULL;
} /* SignCixtCreate */

ValiCert Validator Toolkit 51

Using the Toolkit

NoTE: The scope of the userHdl parameters needs to be at
least as long as that of the Vtk_Ctxt in which it is set. The
Toolkit does not interpret these parameters, but instead
passes these parameters to the callbacks until the
parameters have been reset or the Vtk_Ctxt is no longer
valid.

Code Sample for Signing OCSP Requests

The following sample provides skeleton code that shows a signing callback
function an application can set through the Vtk_OCSPSigninfo structure. This
function can then be called every time an OCSP request is created and needs
signing. The callback function can be triggered by either calling
Vtk_ValidationValidate or Vtk_ValidationGetQueries.

/*

* myOCSPRequestSignCallbackFunction

*

* Callback function for signed OCSP requests.

* This function will get invoked every time the Toolkit

* requires a signature on the request.

*/

int VTK_CALLBACK myOCSPRequestSignCallbackFunction(void* userHdl,
Vik_Buffer *digest, Vtk Buffer *sigOut, int maxSigOutBuf,
int padding)

struct mySign_st *signHdl;

/*
* This sample callback requires and sets the userHdl parameter.
*/
if (userHdl == NULL)
return VTK_ERR_USER_CALLBACK;

/*

* Convert the application handle to proper type - this

* parameter is set when configuring the context;

* The application determines whether this parameter is set.
*/

signHdl = (struct mySign_st*) userHdl;

if (padding == 1) /* PKCS #1 padding required */
{

52

ValiCert Validator Toolkit

Implementing Specialized Validation Processing

* The digest parameter contains the DER encoding of the
* data that needs to be encrypted with the private key.

* The resulting data needs to be written to the sigOut

* puffer and the length set in the sigOut->len field.

* The Toolkit allocated the data in sigOut

* structure and it is of size maxSigOutBuf.

The application performs the following:
-generate the signature on digest buffer
-write resulting signature to sigOut->dPtr
buffer setting the sigOut->length; the toolkit
has allocated space in sigOut buffer of size
maxSigOutBuf

} else
return VTK_ERR_USER_CALLBACK;

return VTK_OK;
} * myOCSPRequestSignCallbackFunction */

Checking Delegated VA Certificates

An application can check delegated VA certificates and determine whether to

accept or reject the certificate used to validate the validation response. An

application can do this using the Vtk_DelegatedissuerCallback function, but

only in VA or CA delegated trust paradigms.

The Vtk_Callback structure sets the callback function and parameter for the

context. This structure is used only if the option CO_DelegatedissuerCB is

specified as the value for the Vtk_CtxtOptionType enumeration which defines

configuration option types for a Vtk_Ctxt structure.

Configuration options can be configured using the Vtk_CtxtSetOption function

and can be retrieved using the Vtk CtxtGetOption function.

The Toolkit calls your application’s callback function when verifying OCSP or
CRT responses in delegated mode. In delegated mode, the certificate in the
OCSP or CRT response is from a non-trusted VA derived by chaining to the

VA's or CA's trusted certificate. This means the signer of the response is not

directly part of the trusted VA or CA certificate store.

ValiCert Validator Toolkit

53

Using the Toolkit

The Toolkit first checks the context for the chain from the delegated certificate
to the trusted root. It then verifies the non-trusted VA's certificate using the
trusted certificate. Finally, the Toolkit calls the application’s callback function
during its checking of OCSP and CRT responses in delegated trust models to
see if the certificate should be accepted.

Once the application completes its processing, it returns VTK_OK to indicate
that the certificate is good and can be used for validating the response. If the
application has detected a problem and does not want the Toolkit to use the
certificate to validate the response, it returns a nonzero value.

Code Sample for Checking Delegated Certificates
/*
* myDelegatedCallbackFunction
* Delegated issuer check callback function.
*/
int VTK_CALLBACK myDelegatedCallbackFunction(void *userHdl,
const Vtk_Cert *delegatedCert,
const Vtk_Cert *trustedCert);

/*
DelegatedCtxtCreate

*

*

* Creates a ValiCert Validator Toolkit Context configured with
* a callback for delegated OCSP/CRT VA trust models.
*
*
*

Parameters:
appData - application specific data to be passed to the callback
*/
static Vtk_Ctxt* DelegatedCtxtCreate(struct my_sign_st *appData)
{
Vik_Ctxt *ctxt = NULL;
Vik_uint32 retCode;
Vtk_CtxtOption ctxtOption;
Vtk_Callback cb;

/*

* Create default toolkit context

*/

if ((ctxt = Vtk_CtxtNew()) == NULL)
return NULL;

54

ValiCert Validator Toolkit

Implementing Specialized Validation Processing

/*
* Set the delegation certificate callback function.
* This callback will be used when checking the validation response
* from a VA which operates in a delegated model.
*/
/*
* Set my callback structure fields.
i
cb.f.DelCertCB = myDelegatedCallbackFunction;
/* application function */
cb.userHdl = appData; /* application parameter */

/*

* Set ctxt option data

*/

ctxtOption.option = CO_DelegatedCertCB; /* callback option */
ctxtOption.d.aCB = &cb; /* callback option data */

if ((retCode = Vtk_ CtxtSetOption(ctxt, &ctxtOption)) != VTK_OK)
{

showError("Vtk_CtxtSetOption - CO_DelegatedlssuerCB", retCode);
Vtk_CtxtDelete(ctxt);

return NULL;

return ctxt;
} /* DelegatedCtxtCreate */

/*

*

myDelegatedCallbackFunction

*

The delegation certificate callback function.
This callback will be used when checking the validation response
* from a VA which operates in a delegated model.

*

*

* This sample function will just display the delegated issuer

* certificate.

*

* Parameters:

* userHd| - application specified pointer set when installing the
* callback function in the toolkit context

*

delegatedCert - responder certificate
trustedCert - trusted issuer of the delegatedCert (this is one of
* the certificates set in the Vtk_Cixt)

*

ValiCert Validator Toolkit 55

Using the Toolkit

int VTK_CALLBACK myDelegatedCallbackFunction(void *userHdl,
const Vtk_Cert *delegatedCert, const Vtk_Cert *trustedCert)
{
myDelegCallback_st *cbStruct;
Vtk_uint32 retCode;
Vtk_CertInfo *certinfo = NULL;

/*
* This example has set the userHdl when setting the callback in
* the Toolkit context, so it requires the handle in this call.
i
if (userHdl == NULL)
return VTK_ERR_USER_CALLBACK;

cbStruct = (myDelegCallback_st*)userHdl;

/*

* This function will obtain the details of the VA and its
* issuer's certificates.

*/

/*

* The callback function userHdl has stored the Toolkit context

* so that it can use it in this call.

*/

if ((retCode = Vtk_CertGetInfo(cbStruct->ctxt,
delegatedCert,&certinfo)) = VTK_OK)

{
showError("Vtk_CertGetInfo", retCode);
/*
* Returns VTK_OK, but if needed the application
* could return VTK_ERR_USER_CALLBACK to indicate
* that it should not trust the VA's certificate.
*/
return VTK_OK;
}
/*
* Now that we have the certificate details, display them.
*/

displayCert("Delegated VA certificate", certinfo);

/*

* No longer need the certificate information; delete it.
i

Vtk_CertinfoDelete(certinfo);

56 ValiCert Validator Toolkit

Implementing Specialized Validation Processing

/*

* Get the details of the issuer of the VA's certificate.

*/

if ((retCode = Vitk_CertGetinfo(cbStruct->ctxt, trustedCert,
&certinfo)) !'= VTK_OK)

{
showError("Vtk_CertGetinfo", retCode);

return VTK_OK;
}

/*

* Display the VA's issuer certificate.

*/

displayCert("VA's issuer certificate", certinfo);

/*

* No longer need the certificate information; delete it.
*/

Vtk_CertinfoDelete(certinfo);

return VTK_OK;
} /* myDelegatedCallbackFunction */

Setting Proxy Information

An application can set information about the HTTP proxy using the
Vtk_Proxylnfo structure. This structure is used to specify the proxy host and
port number used in the OCSP, CRT, and HTTP-CRL protocols. It is not used
for LDAP-CRL.

This structure is used only if the option CO_HTTPProxy is specified as the
value for the Vtk_CtxtOptionType enumeration which defines configuration
option types for a Vtk_Ctxt structure. Configuration options can be configured
using the Vtk_CtxtSetOption function and can be retrieved using the
Vtk_CtxtGetOption function.

ValiCert Validator Toolkit 57

Using the Toolkit

Code Sample for Setting Proxy Information
/*
setProxylnfo

Function to set the HTTP Proxy information to use by the ValiCert
Validator Toolkit.

*
*
*
*
*
* Parameters:

* ctxt - a valid ValiCert Toolkit context previously created
* with Vtk_CtxtNew function call

* proxyHost - host machine for the proxy (e.g. "merced")

* proxyPort - port for the proxy

i

int setProxylnfo(Vtk_Ctxt *ctxt, char *proxyHost, int proxyPort)
{

Vtk_Proxylnfo proxylnfo;

Vik_CtxtOption ctxtOption;

Vik_uint32 ret;

/*

* set the proxy info structure with supplied data

i

proxyInfo.host = proxyHost;

proxylnfo.port = proxyPort;

/*

* set the ctxt option structure for use with proxy info
*/

ctxtOption.option = CO_HTTPProxy;
ctxtOption.d.aProxyInfo = &proxylinfo;

/*

* set the ctxt option

i

ret = Vtk_CtxtSetOption(ctxt, &ctxtOption); assert(ret == VTK_OK);
return O;
} /* setProxylnfo */

Adding OCSP Extensions

An application can add OCSP extension to an entire OCSP validation request
or to a single certificate within the request. A validation request can be made
up of one or more certificates. An extension can be any data that the
application wants to add to a validation request.

To add an extension, an application must allocate memory for the
Vtk_Extension structure and creates an empty extension structure using the

58

ValiCert Validator Toolkit

Implementing Specialized Validation Processing

The Vtk_ExtensionNew extension function. The application can then call the
Vtk_Extensionlinit function to initialize the Vtk_Extension data structure, The
data structure is based on the data the application passes to it.

Once the extension is created and initialized, the application can add the
extension to an entire validation request or to a specific certificate in the
validation query. To add to an entire validation request, the application must
call the Vtk_ValidationAddReqExt function. An extension added using this
function applies to all the certificates in the request. To add an extension to a
specific certificate in the query, the application has two options. One option is
for the application to use the Vtk ValidationAddReqExtForSingleCert, which
uses the certificate and issuer certificate information passed in this function to
identify the certificate to which the application wants an extension added. The
other option is to use the Vtk_ValidationAddRegExtForSingleCertHdl function,
which uses the Vtk_ValHdl passed in this function to identify the certificate to
which the application wants an extension added.

m NOTE: If the application wants to identify the certificate by
means of its validation handle using this function, the
application must first obtain the Vtk_ValHdI structure by
calling the Vtk_AddCert, Vtk_AddCertRaw, or
Vtk_ValidationGetValHdI function.

Code Sample for Adding OCSP Extensions

/*
AddRequestExtension

Adds an extension to the OCSP query associated with a particular
certificate (identified through Vtk_ValHdl) and to the entire
OCSP request.

*

*

*

*

*

*

* Parameters:

* ctxt - ValiCert Toolkit context

* g - validation query structure

* hdl - validation handle identifying the particular certificate

* information in the OCSP query for which the extension

* is to be added

i

int AddRequestExtension(Vtk_Ctxt *ctxt, Vtk_ Validation *q,
Vtk_ValHdl *hdl)

{

const char extOid[]] = "1.2.3";

ValiCert Validator Toolkit 59

Using the Toolkit

const char extData[] = "testMsg";
Vtk_uint32 retCode;
Vitk_Extension *ext = NULL;
Vik_Buffer oid,;

Vtk_Buffer data;

/*

* |nitialize OID buffer

*/

oid.type = VTK_DF_STRING;
oid.dPtr = (Vtk_Byte*) extOid;
oid.len = strlen(extOid);

/*

* Initialize data buffer

*/

data.type = VTK_DF_STRING;
data.dPtr = (Vtk_Byte*) extData;
data.len = strlen(extData) + 1,

/*

* Create an extension object

*/

ext = Vtk_ExtensionNew(ctxt); assert(ext);

/*

* |Initialize with extension data

*/

if ((retCode = Vtk_Extensionlnit(ctxt, ext, &oid, 0, &data))
I= VTK_OK)

{

Vik_ExtensionDelete(ext);
showError("Vtk_Extensionlinit", retCode);
return -1,

/*

* Add extension to the validation query for a specific

* certificate.

*/

if ((retCode = Vtk ValidationAddReqExtForSingleCertHdl(ctxt, hdl,
ext)) = VTK_OK)

60

ValiCert Validator Toolkit

Implementing Specialized Validation Processing

{
Vtk_ExtensionDelete(ext);
showError("Vtk_ValidationAddReqExtForSingleCertHdl", retCode);

return -1;

}

/*

* Add extension to the entire OCSP request.

*/

if ((retCode = Vtk ValidationAddReqExt(ctxt, g, ext)) !'= VTK_OK)
{

Vtk_ExtensionDelete(ext);
showError("Vtk_ValidationAddRegExt", retCode);
return -1;

/*

* Delete the extension data
*/

Vtk_ExtensionDelete(ext);
return VTK_OK;
} /* AddRequestExtension */

/*
* GetResponseExtension

Obtains an OCSP extension from an OCSP response associated with
a particular certificate (identified through Vtk_ ValHdI) and
from the set of extensions present for the entire response.

L

Parameters:

ctxt - ValiCert Toolkit context

hdl - Validation handle identifying the particular certificate
information in the OCSP query for which the extension

L

*

* is to be obtained

*/

int

GetResponseExtension(const Vtk_Ctxt *ctxt, Vtk_ValHdl *hdl)

{
Vtk_Extension *ext = NULL;

const char extOid[] = "1.2.3";

Vtk_Buffer oid;

Vtk_uint32 retCode;

Vtk_uint32 status;

Vtk_ValRespDetails *respDetails = NULL;
Vtk_ValRespSingleCertDetails *certDetails = NULL;

ValiCert Validator Toolkit 61

Using the Toolkit

/*

* |nitialize Oid buffer

*/

oid.type = VTK_DF_STRING;
oid.dPtr = (Vtk_Byte*) extOid;
oid.len = strlen(extOid);

/*

* Obtain the extension from the response.

*/

if ((retCode = Vtk ValHdIGetRevStatus(ctxt, hdl, &status,
&respDetails, &certDetails)) = VTK_OK)

{
showError("Vtk_ValHdIGetRevStatus", retCode);
return -1;
}
/*
* First get the extension from the overall response extensions.
i

if (respDetails)

retCode = Vtk ExtensionGetByOid(ctxt,
respDetails->extensions, &oid, &ext);
if (retCode == VTK_ERR_NOT_FUND)

printf("\nSpecified extension (%s) not found on OCSP
response.”, extOid);

}
else if (retCode == VTK_OK)
{
printf("\nFound extensions %s in OCSP response.");
/*
* Delete the extension data.
i
Vtk_ExtensionDelete(ext);
}
else
showError("Vtk_ExtensionGetByOid", retCode);
}
/*
* Get the extension from the specific certificate OCSP reply.
*/
if (certDetails)
{

62 ValiCert Validator Toolkit

Implementing Specialized Validation Processing

retCode = Vtk_ExtensionGetByOid(ctxt,
certDetails->extensions, &oid, &ext);
if (retCode == VTK_ERR_NOT_FUND)

printf("\nSpecified extension (%s) not found on OCSP
response.”, extOid);

}
else if (retCode == VTK_OK)

printf("\nFound extensions %s in OCSP response.");

/*

* Delete the extension data.
*/

Vtk_ExtensionDelete(ext);

}

else
showError("Vtk_ExtensionGetByOid", retCode);

/*

* Delete the OCSP response details.

*/

Vtk_ValRespDetailsDelete(respDetails);
Vtk_ValRespSingleCertDetailsDelete(certDetails);

return VTK_OK;
} * GetResponseExtension */

Getting Validation Handle for Specific Certificate

The Vtk_ValidationGetValHdI validation function creates a validation handle
for a specific certificate within a validation query. This function is useful if the
application added certificates to the query using the
Vtk_ValidationAddCertChain function or did not specify the Vtk_ValHdI when
it added the certificate using the Vtk ValidationAddCert or
Vtk_ValidationAddCertRaw function.

ValiCert Validator Toolkit 63

Using the Toolkit

Code Sample for Getting Validation Handle

/*
* getValHdI
*
* Function to obtain a Vtk_ValHdl from a Vtk_Validation structure.
* A Vtk_ValHdl can be obtained either at time of adding the
* certificate to the Vtk_Validation structure or by using the
* Vtk_ValidationGetValHdl function.
*
* Parameters:
* ctxt - ValiCert Validator Toolkit context
* val - Vtk_Validation structure
*

cert - certificate for which to obtain the validation handle
* jssuerCert - issuer certificate of the "cert"; this can be

* NULL if the issuer certificate has been previously

* added to the Vik_Ctxt by calling Vtk_CtxtAddCert(s).
*

/

int getValHdl(const Vtk_Ctxt *ctxt, Vtk_Validation *val,
const Vtk_Cert *cert, const Vtk_Cert *issuer)
{
Vtk_ValHdl *hdl = NULL;
Vtk_uint32 ret;

/*
* First add the certificate to the Vtk_Validation structure
*/
if ((ret = Vtk_ValidationAddCert(ctxt, val, cert, issuer, NULL))
I= VTK_OK)
{
showError("Vtk_ValidationAddCert", ret);
return -1;

/*
* IMPORTANT

*

The application would need to continue with its normal
processing such as perform the validation or add more
certificates to be validated. The code for this processing
could be inserted here. Once the application completes
its processing, the application can obtain the validation
handle for the certificate using the sample code below.

L

*

*

64 ValiCert Validator Toolkit

Implementing Specialized Validation Processing

/*

* Obtain the validation handle for the certificate

*/

if ((ret = Vtk_ValidationGetValHdI(ctxt, val, cert, issuer,
&hdl)) '= VTK_OK)

{
showError("Vtk_ValidationGetValHdI", ret);
return -1;

}

/*

* The validation handle can now be used to obtain certificate
* revocation details through using the

* Vtk_ValidationAddRegExtForSingleCertHd! function.

*/

/*
* Free any resources associated with the validation handle.
*
/
if (hdl)
Vtk_ValHdIDelete(hdl);

return O;
} /* getvalHdl */

ValiCert Validator Toolkit 65

Using the Toolkit

66 ValiCert Validator Toolkit

CHAPTER

3
Toolkit Reference

This section provides reference information about data structures and
functions available to developers who are integrating validation into their
applications.

<« Constants

< Enumerations

< Data Structures

< Callback Functions
< Functions

For task-oriented information on how to use these functions in your
application, refer to Chapter 2, "Using the Toolkit."

ValiCert Validator Toolkit

67

Toolkit Reference

Constants

The Toolkit provides one constant that is used by a few of the Toolkit
functions.

VTK_GVAS_URL

const char* VTK_GVAS_URL;

Description

A constant that defines the URL for the ValiCert Global VA Service. It can be
used to specify this URL in several Toolkit function calls.

Parameters

VTK_GVAS_URL Symbol that can be used to define the Global VA
Service URL.
Notes

None

See Also

“Vtk_CtxtSetDefaultVa” on page 164
“Vtk_CtxtSetValnfo” on page 168
“Vtk_ValidationSetValnfo” on page 221

68 ValiCert Validator Toolkit

Enumerations

Enumerations

The Toolkit provides several enumerated types that are used by the Toolkit
data structures and functions. They are listed in alphabetical order.

Vtk_CtxtLogType

enum Vtk_CtxtLogType {

LOG_Error = 0,
LOG_Info,
LOG_Debug,
LOG_VaData
I3
Description

This enumerated type specifies the different types of logging messages.

Parameters

LOG_Error Messages that explain an error that caused the
program to stop.

LOG_Info Messages that describe toolkit activities, such as
loading a certificate from a file, setting default VA
information, or sending a request to a VA.

LOG_Debug Detailed information which usually accompanies an
error message for example the value of some
variables when an error occurred or information
about each successfully called function.

LOG_VaData Validation data that is either request data sent to a
VA or response data received from a VA.

Notes

Log types are also used to specify the level of logging in the structure
m Vtk_LogOptions. Specifying a level will also include all logging below. For
example specify the log level of LOG_Debug to include LOG_Debug,
LOG_Info and LOG_Error messages. Specify log level of LOG_VaData to
include all log messages.

ValiCert Validator Toolkit 69

Toolkit Reference

See Also

“Vtk_LogOptions” on page 99

70 ValiCert Validator Toolkit

Enumerations

Vtk_CtxtOptionType

enum Vtk_CtxtOptionType{
CO_EnableRelocationProtocol,
CO_EnableServiceLocatorExt,
CO_ClientInfoExt,
CO_OCSPNonceExt,
CO_HTTPProxy,
CO_MaxTimeSkew,
CO_UseAlAData,
CO_LoadLDAPLIb,
CO_CRLCacheDir,
CO_MaxCrlCacheTime,
CO_CrINoNextUpdateCacheTime,
CO_LDAPSearchTimeout,
CO_DelegatedlssuerCB,
CO_OCSPsigninfo,

3

typdef struct Vik_CtxtOption_st Vtk_CtxtOption;

struct Vitk_CtxtOption_st {
enum Vtk_CtxtOptionType option;

union {
char* aChar;
int anint;
Vtk_Proxylnfo * aProxylnfo;
Vtk_Callback *aCB;
Vtk_OCSPSigninfo *Signinfo;

}d

3
Description

An enumeration that defines configuration option types for a Vtk_Citxt
structure. These options can be configured using the Vtk_CtxtSetOption
function and can be retrieved using the Vtk_CtxtGetOption function.

The Vtk_CtxtOption structure is used to pass Vtk Ctxt option data in these
functions. The option can be specified as any of the following data types using
the corresponding variable shown in parentheses:

% integer (d.anint)
% character (d.char)

ValiCert Validator Toolkit 71

Toolkit Reference

< structure (d.aProxylnfo, d.aCB, d.aSignInfo)

Parameters

CO_EnableRelocationProtocol

CO_EnableServiceLocatorExt

CO_ClientInfoExt

CO_OCSPNonceExt

Type: int

Enables or disables the ValiCert Relocation
protocol used in validation responses to
inform the Toolkit which validation responder
to use. Typically, the protocol selects the
geographically closest responder. To set the
relocation information in the validation
responses, the protocol uses the time zone
information which is passed in the validation
request as an extension. The possible values
are 0 and 1. The default is 1, enable the
relocation protocol.

This option is not supported at this time.

Type: int

Includes or excludes the service locator
request extension. This extension allows an
OCSP server to reroute a request to the
OCSP server authorized to sign the certificate.
It applies to OCSP requests only. The
possible values are 0 and 1. The default is 1,
include the service locator extension.

Type: int

Includes or excludes the client information
extension. This extension identifies the
UserAgent, OCSP Client, or CRT Client used
to make the validation request. It applies to
OCSP/ CRT requests only. The possible
values are 0 and 1. The default is 1, include
the client information extension.

Type: int

Includes or excludes the nonce extension.
This extension cryptographically binds a
request and response to prevent replay
attacks. This extension can be configured for
OCSP requests and responses. The possible
values are 0 and 1. The default is 1, include
the OCSP Nonce extension.

72

ValiCert Validator Toolkit

Enumerations

CO_HTTPProxy

CO_MaxTimeSkew

CO_UseAlAData

CO_LoadLDAPLib

CO_CrlCacheDir

Type: Vtk_ProxyInfo

Information about the HTTP Proxy to use for
CRL and OCSP/CRT over HTTP. The
information includes the port and host for the
proxy. Note that this is not used for LDAP-
CRL.

Type: int

Maximum time difference, in seconds, allowed
between the client and the server. It can be
any integer. The default is 300 seconds.

Tip: If the difference between the times is
greater than this configured value, you may
see many responses that indicate the
response is expired or not yet valid.

Type: int

Uses the Authority Information Access (AIA)
certificate extension to determine which VA to
use to validate a certificate. The AIA makes
checks for a VA in the following:

< certificate

<+ CA

< context

The default is 0, do not use AlA.

Type: int

Enables or disables the force loading of the
Netscape LDAP SDK that ships with the
Toolkit. If this option is enabled, it forces
loading of the LDAP library when the LDAP
function is called. This option applies only if
checking CRLs over LDAP. The possible
values are 0 and 1. The default is 0, do not
load the library until needed.

Type: char

Directory location for caching the CRL. This
can be any valid directory. The default is the
VtkCriCacheDir in the current directory of the
application.

ValiCert Validator Toolkit

73

Toolkit Reference

CO_MaxCrlCacheTime

CO_CrINoNextUpdateCacheTime

CO_LDAPSearchTimeOut

CO_DelegatedlssuerCB

CO_OCSPSigninfo

Notes

None

Type: int

Maximum cache duration of CRLs, in
seconds. The default cache duration is until
the CRL expires.

Type: int

Determines whether the no nextUpdate CRLs
(that is CRLs without a nextUpdate field) are
cached along with the other CRLs in the
directory defined by the CO_CrlCacheDir
option. The default is -1, do not cache the no
next Update CRLs. A positive value results in
CRLs cached for the specified number of
seconds.

Type: int

Maximum number of seconds that the client
waits for a response from the LDAP server
before returning an error. The default is 120
seconds.

Type: Vtk_Callback

Callback for the delegated OCSP/CRT
response issuer. See “Vtk_Callback” on
page 85

Type:Vtk_OCSPSigninfo

OCSP signing information. See
“Vtk_LogOptions” on page 99.

74

ValiCert Validator Toolkit

Enumerations

See Also

“Vtk_CtxtOptionType” on page 95
“Vtk_CtxtGetOption” on page 158
“Vtk_CtxtOptionDeleteContent” on page 162
“Vtk_CtxtSetOption” on page 166

ValiCert Validator Toolkit 75

Toolkit Reference

Vtk DataFormat

enum Vtk_DataFormat{
VTK_DF_STRING,
VTK_DF_DER,
VTK_DF_BASE64,
VTK_DF_HEX,

Description

An enumeration that defines the format of data passed between the Toolkit
and the application.

Parameters

VTK_DF_STRING Null-terminated printable string
VTK_DF_DER Distinguished Encoding Rules
VTK_DF_BASE64 Base 64 encoding
VTK_DF_HEX Hexadecimal encoding

Notes
None

See Also

None

76 ValiCert Validator Toolkit

Enumerations

Vtk_DataType

enum Vtk_DataType{
VTK_DT_CRL = 0,
VTK_DT_PKCS7,

Description

An enumeration that defines the type of data passed between the Toolkit and
the application. This enumeration is used with only the CRL protocol.

Parameters
VTK_DT_CRL CRL data is being passed.
VTK_DT_PKCS7 PKCS?7 data is being passed. This is a wrapper for
CRL data.
Notes
None
See Also

“Vtk_CRLProtocolDetails” on page 91
“Vtk_ProtocolDetails” on page 102

ValiCert Validator Toolkit 77

Toolkit Reference

Vtk _RevocationReason

enum Vtk_RevocationReason{
VTK_REV_STATUS_UNKNOWN = -1,
VTK_REV_UNSPECIFIED = 0,
VTK_REV_KEY_COMPROMISE,
VTK_REV_CA_COMPROMISE,
VTK_REV_AFFILIATION_CHANGED,
VTK_REV_SUPERSEDED,
VTK_REV_CESSATION_OF OPERATION,
VTK_REV_CERTIFICATE_HOLD,
VTK_REV_REMOVE_FROM_CRL

Description

An enumeration that defines the reason a certificate has been revoked. The
revoking entity optionally provides this information at time of revocation. This
enumeration is returned in the Vtk_ValRespSingleCertDetails structure.

VTK_REV_STATUS_UNKNOWN

VTK_REV_UNSPECIFIED

VTK_REV_KEY_COMPROMISE

VTK_REV_CA_COMPROMISE

VTK_REV_AFFILIATION_CHANGED

VTK_REV_SUPERSEDED

VTK_REV_CESSATION_OF _
OPERATION

VTK_REV_CERTIFICATE_HOLD
VTK_REV_REMOVE_FROM_CRL

Certificate status is unknown because the
revocation reason field was not present in
the response.

Certificate has been revoked for an
unspecified reason. This is a catchall
category.

the private key has been compromised.

CA signing the certificate has been
compromised.

The owner of the certificate is no longer
affiliated with the organization.

Certificate has been superseded by
another certificate.

Operations for the entity has terminated.
For example, if a company is no longer
conducting business.

Certificate has been placed on hold.

Certificate serial number has been
removed from the CRL.

78

ValiCert Validator Toolkit

Enumerations

Notes

None

See Also

“Vtk_ValRespSingleCertDetails” on page 109
“Vtk_ValHdIGetRevStatus” on page 195
“Vtk_ValidationGetRevStatus” on page 212

ValiCert Validator Toolkit

79

Toolkit Reference

Vtk ValidationMech

enum Vtk_ValidationMech {
VTK_VM_CRT = 1,
VTK_VM_OCSP,
VTK_VM_CRL

Description

This enumeration specifies the validation mechanism employed by the
application to validate certificates. It is used in the Vtk_CtxtSetDefaultVa,
Vtk_CtxtSetValnfo, and Vtk_ValidationSetValnfo functions.

Parameters

VTK_VM_CRT Certificate Revocation Trees (CRTSs). High-
performance validation method proprietary to
ValiCert. This is the default.

VTK_VM_OCSP Online Certificate Status Protocol. This validation
method requires a certificate recipient to check
certificate status by sending a request to an OCSP
server. This method provides up-to-date certificate
status information, but requires network
communication to the OCSP server.

VTK_VM_CRL Certificate Revocation Lists (CRLs). This validation
method requires that the verifier download CRLs
published by CA and confirm that certificate is not on
the list. This method is provided to accommodate
legacy CRL-based systems.

Notes

None

See Also

“Vtk_Proxylnfo” on page 104
“Vtk_ValRespDetails” on page 107
“Vtk_ValRespSingleCertDetails” on page 109

80

ValiCert Validator Toolkit

Data Structures

Data Structures

The Toolkit provides several data structures that are used by the Toolkit
functions. The data structure can have one of the following type definitions:

0
o

integer (signed and unsigned)

0
o

structure

.

3
"’

char (signed and unsigned)
% constant

ValiCert Validator Toolkit 81

Toolkit Reference

Vtk_Buffer

typedef struct {
enum Vtk_DataFormat type;
Vtk_Byte* dPtr;
Vtk_uint32 len;

} Vik_Buffer,;

Description

This is a general purpose structure used to pass data between the Toolkit or
VA and your application. It defines information such as the encoding method
employed and the length of the buffer. The most common use of this buffer is
to pass certificate data, which is typically 1K in length.

It is used in the Vtk_ValidationAddCertRaw, Vtk_Certlinit,
Vtk_ExtensionsGetByOid, Vtk_CtxtSetOption, and Vtk_CtxtGetOption
functions. It is also used in the Vtk_ValQuery structure for request and
response information.

Parameters

type Type of encoding applied to the data contained in the
buffer. The possible values are:

< VTK_DF_STRING—null-terminated printable
string

< VTK_DF_DER—DER encoding
< VTK_DF_BASE64—Base64 encoding

< VTK_DF_HEX—Hexadecimal encoding

For more information about these encoding types,
see “Vtk_DataFormat” on page 76.

dPtr Pointer to the location of the buffer.

len Length of the buffer.

82 ValiCert Validator Toolkit

Data Structures

Notes

The Toolkit provides the VTK_BUF _INIT macro for initializing the
m Vtk_Buffer and VTK_EMPTY_BUF for checking whether it is empty.
When the buffer is initialized, Vtk_Buffer contains the following values:

Vtk_DataFormat = VTK_DF_STRING
dPtr = NULL
len = 0

When checking if the buffer is empty, the following is checked:

dPtr == NULL
len < 0

See Also
“Vtk_DataFormat” on page 76
“Vtk_ValQuery” on page 111

ValiCert Validator Toolkit 83

Toolkit Reference

Vtk_Byte

typedef unsigned char Vtk Byte;

Description

This unsigned character is used within the Vtk_Buffer data structure to point
to the location of the buffer.

Parameters

None

Notes

None

See Also
“Vtk_Buffer” on page 82

84 ValiCert Validator Toolkit

Data Structures

Vtk_Callback

typedef struct {
union {
Vtk_DelegatedissuerCallback DellssuerCB;
i
void* userHdl;
}Vik_Callback;

struct Vitk CtxtOption_st

{
enum Vtk_CtxtOptionType option;
union {
char* aChar;
int anint;
Vtk_Proxylnfo *aProxylnfo;
Vtk_Callback *aCB;
Vtk_OCSPSigninfo *aSigninfo;
}d
2
Description

This structure sets the callback function and parameter for the context. This
structure is used only if the option CO_DelegatedlssuerCB is specified as the
value for the Vtk_CtxtOptionType enumeration. The CO_DelegatedlssuerCB
option only applies if the CA is issuing delegated certificates.

Parameters
DelCertCB An application callback function executed when
verifying OCSP and CRT responses. This function
can be invoked only if issuer of the OCSP/CRT
response is delegated by the CA or VA.
userHdl Application specific data pointer. The Toolkit calls
this parameter. The Toolkit treats this pointer as
opaque data.
Notes
None

ValiCert Validator Toolkit 85

Toolkit Reference

See Also

“Vtk_CtxtLogType” on page 69

86 ValiCert Validator Toolkit

Data Structures

Vitk_Cert

typedef void* Vtk_Cert;

Description

This structure contains an X.509 certificate. Although the certificate structure
is opaque to your application, the Toolkit provides several functions that allow
your application to extract specific fields from within the X.509 certificate. In
addition, it provides parsing functions that allow your application to convert,
encode and decode certificate structures.

This structure is used throughout the Toolkit, wherever an X.509 certificate is
required.

Parameters

None

Notes

None

See Also

None

ValiCert Validator Toolkit 87

Toolkit Reference

Vtk_Certinfo

typedef struct {
Vtk_uint32 version;
Vtk_Buffer serialNum;
Vtk_Buffer signatureAlg;
Vtk_Buffer issuer;
time_t notBefore;
time_t notAfter;
Vtk_Buffer subject;
Vtk_Buffer publicKeyAlg;
Vtk_Buffer* issuerUniqueld;
Vtk_Buffer* subjectUniqueld;
} Vik_Certinfo;

Description

This structure contains detailed X.509 certificate information. It is returned in
the Vtk_CertGetlnfo function.

Parameters

version

serialNum
signatureAlg
issuer
notBefore

notAfter

subject

publicKeyAlg

issuerUniqueld

Version number of the encoded certificate.

Unique serial number of the certificate assigned by
the CA.

Algorithm used by the CA to sign the certificate, for
example, RSA.

Name of the CA that has signed and issued the
certificate. The application supplies the list of trusted
CAs in the Vtk_Citxt structure.

Start time of the certificate’s validity period.
End time of the certificate’s validity period.

Holder of the private key for which the public key is
being certified.

Encryption algorithm and hashing algorithm used in
the public key. For example, RSA and SHAL or RSA
with MD5.

Alternative identifier for issuer. This is an optional
parameter that is rarely used.

88

ValiCert Validator Toolkit

Data Structures

subjectUniqueld Alternative identifier for subject. This is an optional
parameter that is rarely used.

Notes

None

See Also
“Vtk_CertGetInfo” on page 129
“Vtk_CertIinfoDelete” on page 133

ValiCert Validator Toolkit

89

Toolkit Reference

Vtk_CertStore

typedef void* Vtk_CertStore;

Description

This structure serves as a container for one or more X.509 certificates. It is
opaque to your application.Your application can use this structure to pass
certificate lists to and from Toolkit functions.

This structure is used in many functions that allow you to add, delete, load,
and create certificate stores.

Parameters

none

Notes

None

See Also

“Vtk_CertStoreAddCert” on page 141
“Vtk_CertStoreAddCertRaw” on page 143
“Vtk_CertStoreDelete” on page 145
“Vtk_CertStoreLoadFromFile” on page 146
“Vtk_CertStoreNew” on page 148

90 ValiCert Validator Toolkit

Data Structures

Vtk_CRLProtocolDetails

typedef struct {
enum Vtk_DataFormat encoding;
enum Vtk_DataType type;
}Vitk_CRLProtocolDetails;

Description

This structure is used to specify detailed information specific to the CRL
protocol. This structure is used in the Vtk_ProtocolDetails structure.

Parameters
encoding An enumeration that defines the format of the
CRL. See “Vtk_DataFormat” on page 76 for
possible values.
type An enumeration that defines the structure of the
CRL. This can be PKCS7 and CRL. See
“Vtk_DataType” on page 77 for possible values.
Notes
None
See Also

“Vtk_ProtocolDetails” on page 102
“Vtk_CtxtSetValnfo” on page 168

ValiCert Validator Toolkit 91

Toolkit Reference

Vtk_CRLRespDetails

typedef struct Vtk_CRLRespDetails_st
Vtk_CRLRespDetails;

struct Vtk_CRLRespDetails_st {
time_t nextUpdate,

kh

Description

This structure is used to return detailed header information specific to the
CRL protocol. It is only used within the Vtk_ValRespDetails structure which
returns revocation information for the entire validation response.

Parameters
nextUpdate Time at which the CRL is expected to be updated
again.
Notes
None
See Also

“Vtk_ValRespDetails” on page 107

92 ValiCert Validator Toolkit

Data Structures

Vtk_CRTRespDetails

typedef struct Vtk_CRTRespDetails_st
Vtk_CRTRespDetails;

struct Vtk_ CRTRespDetails_st {
Vtk_uint32 minVersionToRead,
time_t nextUpdate,
time_t validUntil,
Vtk_Buffer hashAlgorithm,
Vtk_uint32 fullTreeLeafCount,

Description

This structure is used to return detailed header information specific to the
CRT protocol. It is only used within the Vtk_ValRespDetails structure which
returns revocation information for the entire validation response.

Parameters

minVersionToRead Minimum version of the CRT protocol required to
process the response.

nextUpdate Time at which the CRT is expected to be updated again.
validUntil Time that the CRT expires.
hashAlgorithm Hash algorithm used for creating the CRT/hash tree.
fullTreeLeafCount Number of leaf nodes in the CRT tree.

Notes

None

See Also

“Vtk_ValRespDetails” on page 107

ValiCert Validator Toolkit

93

Toolkit Reference

Vtk_Ctxt

typedef void* Vtk_Ctxt;

Description

The validation context structure. It will store information, such as VA URL for a
particular CA, trusted VA certificates, and trusted CA certificates, which is
persistent over validation checks. In addition, default validation options such
as relocation information usage, usage of service locator extension will be
stored in this structure. The context is initialized with the Global VA Service as
the default VA and CRT as the default protocol.

For usage information, see Step 2 “Create a Context” on page 11.

Notes

None

See Also
“Vtk_CtxtSetDefaultvVa” on page 164

94

ValiCert Validator Toolkit

Data Structures

Vtk_CtxtOptionType

typedef struct Vtk_CtxtOption_st Vitk_CtxtOption;
struct Vtk_CtxtOption_st {
enum Vtk_CtxtOptionType option;
union {
char* aChar;
int anint;
Vtk_Proxylnfo * aProxylnfo;
Vtk_Callback *aCB;
Vtk_OCSPSigninfo *Signinfo;
}d
2
Description

A structure that defines the configuration option for a Vtk_Ctxt structure.
These options can be configured using the Vtk_CtxtSetOption function and
can be retrieved using the Vtk_CtxtGetOption function.

The Vtk_CtxtOption structure is used to pass Vtk_Cixt option data in these
functions. The option can be specified as either an integer, char,
Vtk_Proxylnfo structure, Vtk_CallBack structure, or Vtk_OCSPSigninfo
structure. The data type for the option is shown in parentheses within the
description of each option.

Parameters

option One of the Vtk_CtxtOptionType values.

aChar Character string that applies, for example,
when the CO_CrlCacheDir context type
option is specified.

anint Integer type that applies when many of the
context type options are specified.

aProxylnfo Proxy structure that applies when the

CO_HTTP context option type is specified.

ValiCert Validator Toolkit 95

Toolkit Reference

aCB Callback that applies, for example, when the
CO_DelegatedissuerCB is specified.

aSigninfo OCSP Sign Information structure that applies,
for example, when the CO_OCSPSigninfo
context option is specified.

Notes

When this structure is populated in the Vtk_CtxtGetOption call, the
application should release the structure’s contents using
Vtk_CtxtOptionDeleteContent.

See Also

“Vtk_CtxtLogType” on page 69
“Vtk_Callback” on page 85
“Vtk_LogOptions” on page 99
“Vtk_Proxylnfo” on page 104
“Vtk_CtxtGetOption” on page 158
“Vtk_CtxtOptionDeleteContent” on page 162
“Vtk_CtxtSetOption” on page 166

96

ValiCert Validator Toolkit

Data Structures

Vtk _Extension

typedef struct {
Vtk_Buffer oid;
int critical;
Vtk_Buffer value;
void *vtkPrivateData;
}Vtk_Extension;

Description

This structure is used to represent an X.509 extension. Extensions can be
present in certificates, CRLs, and the OCSP and CRT protocols. The data
added depends on the type of extension.

This structure is returned by several of the extension functions and describes
a specific extension within the list of extensions.

Parameters
oid
critical
value

vtkPrivateData

Notes

None

See Also

“Vtk_ErrorToString_r" on page 171

Object Identifier for the extension.

Value that determines whether the extension
is critical. The possible values are 0 and 1.

Buffer representing the value of the
extension.

Toolkit private data which is opaque to the
application.

“Vtk_ExtensionGetByOid” on page 175

“Vtk_ExtensionsGetith” on page 185

ValiCert Validator Toolkit

97

Toolkit Reference

Vtk _Extensions

typedef void* Vtk_Extensions;

Description

This structure contains the list of extensions that can be parsed using several
of the extension functions. It represents X.509 extensions used in certificates,
CRLs, and the OCSP and CRT protocols.

Parameters

None

Notes

If the application wants to return information about a specific
m extension with the list, it must obtain it from the Vtk_Extension
structure.

See Also

“Vtk_Extension” on page 97
“Vtk_CertGetExtensions” on page 127
“Vtk_ExtensionGetByOid” on page 175
“Vtk_ExtensionsDelete” on page 181
“Vtk_ExtensionsGetCount” on page 183
“Vtk_ExtensionsGetith” on page 185

98 ValiCert Validator Toolkit

Data Structures

Vtk_LogOptions

typedef struct {
enum Vtk_CtxtLogType loglLevel;
Vtk_uint32 int logMode;
Vtk_Buffer logFileName;
Vtk_OpenLogCallback openLogCB,;
Vtl_CloseLogCallback closelLogCB;
Vtk_WriteLogCallback writeLogCB;

}Vtk_LogOptions;

Description

This structure defines the logging options. The parameters are set by the
arguments of the function Vtk_OpenLog() in the Toolkit context.

Parameters

logLevel An enumerated type, used here to specify the

logging message level.

Specifying a log level will also include all logging
levels listed below it in the enumerated type
Vtk_CtxtLogType definition. For example specify the
log level of LOG_Debug to include debugging, info
and error log messages. Specify log level of

LOG_VaData to include all log messages.

logMode Specifies the mode of logging. Modes can be
combined using the bitwise OR (]) operator.

The modes are:

VTK_LOG_MODE_DEFAULT—New logs are

appended to old log file, no flushing.

VTK_LOG_MODE_OVERWRITE—New log

messages overwrite any old data.

VTK_LOG_MODE_FLUSH—Each message is

flushed to the log file.

logFileName The name and path of the Log File. If an empty buffer
is passed, the default (vc_toolkit.log) is used.

openLogCB A pointer to a user defined callback function that
opens and initializes the log stream. If NULL is

passed, the default toolkit function is used.

closeLogCB A pointer to a user defined callback function that
closes logging. If NULL is passed, the default toolkit

function is used.

ValiCert Validator Toolkit

99

Toolkit Reference

writeLogCB A pointer to a user defined callback function that
writes logging messages. If NULL is passed, the
default toolkit function is used.

Notes

The callback pointers are used to indicate user-defined callback
m functions. Use these to customize Toolkit logging, for example to log
to an application specific log facility.

Either provide all three logging callback functions or none.

See Also

“Data Structures” on page 81
“Vtk_OpenLogCallback” on page 121
“Vtk_WriteLogCallback” on page 123
“Vtk_CloseLogCallback” on page 115
“Vtk_OpenLog” on page 189

100 ValiCert Validator Toolkit

Data Structures

Vtk_OCSPSigninfo

typdef struct {
Vtk_OCSPSignCallback OCSPSignCB;
void *userHdl
Vtk_Cert* signerCert;
}Vtk_OCSPSigninfo;

Description

This structure defines OCSP signing information for the context. This
structure applies only if the Vtk_CtxtOptionType enumeration value is
CO0_OCSPsSigninfo.

Specify this structure only if the application wants OCSP signed requests.

Parameters
OCSPSignCB Function pointer to the OCSPSigncallback.
userHdl Application specific handle that the Toolkit passes
back to the application in the callback.
signerCert Certificate that corresponds to the private key the
application uses in the callback.
Notes
None
See Also

“Vtk_CtxtLogType” on page 69
“Vtk_OCSPSignCallBack” on page 119

ValiCert Validator Toolkit 101

Toolkit Reference

Vtk_ProtocolDetails

typedef struct Vtk_ProtocolDetails_st
Vtk_ProtocolDetails;

typedef struct {
enum Vtk_DataFormat encoding;
enum Vtk_DataType type;
}Vtk_CRLProtocolDetails;

struct Vtk_ProtocolDetails_st

{
enum Vtk_ValidationMech type
union
{
Vtk_CRLProtocolDetails crl;
}d
Description

A structure that defines additional VA protocol information. Currently this
structure is applicable to only CRL protocol information.

Parameters
type Validation mechanism type employed by the user.
The possible values are:
% VTK_VM_CRL
For more information about this value, see
“Vtk_ValidationMech” on page 80.
crl CRL retrieval mechanism employed by the
application. The information includes the data type
and format applied to the data passed between the
Toolkit and the application.
Notes

Currently, this structure is used only for CRLs.

102 ValiCert Validator Toolkit

Data Structures

See Also
“Vtk_ValQuery” on page 111
“Vtk_CtxtSetValnfo” on page 168

ValiCert Validator Toolkit 103

Toolkit Reference

Vtk_ProxyInfo

typdef struct {
char *host;
int port;

} Vtk_Proxylnfo;

Description

This structure is used to specify information about the HTTP Proxy. This
structure is used to specify the proxy host and port number used in the OCSP,
CRT, and HTTP-CRL protocols.

Parameters
host Name of the HTTP Proxy host.
port Port number of the HTTP Proxy host.

When this structure is returned from the Vtk_CtxtGetOption function,
you must use the Vtk_CtxtOptionDeleteContent function to release
memory allocated to it.

See Also

“Vtk_CtxtLogType” on page 69
“Vtk_CtxtGetOption” on page 158
“Vtk_CtxtOptionDeleteContent” on page 162

104

ValiCert Validator Toolkit

Data Structures

Vik_ValHdl

typedef void* Vtk_ValHdl;

Description

This data structure links validation information to specific certificate data and
can be used to obtain validation status for a specific certificate. It is opaque to
your application. The following validation functions allocate memory and
resources for this structure:

< Vtk ValidationAddCert
< Vtk ValidationAddCertRaw
% Vitk ValidationAddReqExtForSingleCertHdI

The Vtk_ValHdIGetRevStatus function uses this structure and the
Vtk_ValHdIDelete function releases its memory and resources.

Parameters

None

Notes

None

See Also

“Vtk_ValidationAddCert” on page 198
“Vtk_ValidationAddCertRaw” on page 200
“Vtk_ValidationDelete” on page 210
“Vtk_ValidationGetRevStatus” on page 212
“Vtk_ValidationAddReqExtForSingleCertHdI” on page 208

ValiCert Validator Toolkit 105

Toolkit Reference

Vtk_Validation

typedef void* Vtk_Validation;

Description

This data structure encapsulates a set of validation queries that can be sent to
one or more VAs. The validation query structure is opaque to your application.
It supports the OCSP, CRT, and CRL validation mechanisms. This data
structure is used by the several validation and validation query functions.
Parameters

None

Notes

None

See Also

“Vtk_ValidationAddCert” on page 198
“Vtk_ValidationAddCertRaw” on page 200
“Vtk_ValidationDelete” on page 210
“Vtk_ValidationGetRevStatus” on page 212
“Vtk_ValidationGetQueries” on page 215
“Vtk_ValidationGetValHdI" on page 217
“Vtk_ValidationValidate” on page 223
“Vtk_ValidationValidateFromQueries” on page 225

106 ValiCert Validator Toolkit

Data Structures

Vtk_ValRespDetails

}od;

typdef struct {
enum Vtk_ValidationMech type;
Vtk_uint32 version;
Vtk_Buffer *issuerldByName;
Vtk_Buffer *issueridByKey;
time_t issueTime;
Vtk_Extensions *extensions;
union {

} Vik_ValRespDetails;

Vtk_CRTRespDetails *crt;
Vtk_CRLRespDetails *crl;

Description

This structure contains header information which details revocation
information for the entire validation response. It includes header information
common to all responses and header information specific to the OCSP, CRT,
or CRL protocol employed. Additional protocol-specific information is
available for the CRT and CRL protocols.

Parameters

type
version

issuerldByName

issuerldByKey

issueTime
extensions

crt

crl

Validation mechanism used to validate certificates.
Version number of the protocol

Issuer of validation information identified by
name.This can be a VA or CA. Itis NULL if a value is
provided in the issuerldByKey field.

Issuer of validation information identified by public
key hash. This can be a VA only. Itis NULL if a value
is provided in the issuerByName field.

Time the response was issued.
Extensions included in the response.

Additional CRT-specific information. See
“Vtk_CRTRespDetails” on page 93

Additional CRL-specific information. See
“Vtk_CRLRespDetails” on page 92

ValiCert Validator Toolkit

107

Toolkit Reference

Notes

This structure is used to return validation response information from
the Vtk_CRLValidateCert, Vtk_ValidationGetRevStatus and

Vtk_ValHdIGetRevStatus functions.

See Also

“Vtk_CRLRespDetails” on page 92
“Vtk_CRTRespDetails” on page 93
“Vtk_CRLValidateCert” on page 151
“Vtk_ValHdIGetRevStatus” on page 195
“Vtk_ValidationGetRevStatus” on page 212

108

ValiCert Validator Toolkit

Data Structures

Vtk_ValRespSingleCertDetails

typedef struct {

enum Vtk_ValidationMech type;

Vtk_uint32 certStatus;

time_t thisUpdate;

time_t nextUpdate;

time_t revocationTime;

enum Vtk_RevocationReason revocationReason;

Vtk_Extensions *extensions;
}Vik_ValRespSingleCertDetails;

Description

This structure contains detailed revocation information for a single certificate.
A revocation response or CRL will contain this information for all the
certificates they describe.

Parameters

type
certStatus
thisUpdate
nextUpdate

revocationTime

revocationReason

extensions

crl

Notes

None

Validation mechanism used to validate certificates.
Status of the certificate.
Time at which the status information was issued.

Time at which the revocation data is expected to be
updated again.

Time at which the certificate was revoked.

Reason the certificate was revoked. This field is
optional. It is Vtk_Rev_Status_Unknown when not
specified. See “Vtk_RevocationReason” on page 78
for a list of possible reasons.

Extensions included in the response.

Additional CRL-specific information. See
“Vtk_CRLRespDetails” on page 92

ValiCert Validator Toolkit

109

Toolkit Reference

See Also

“Vtk_Extensions” on page 98
“Vtk_ValRespDetails” on page 107
“Vtk_CRLValidateCert” on page 151
“Vtk_ValHdIGetRevStatus” on page 195
“Vtk_ValidationGetRevStatus” on page 212

110

ValiCert Validator Toolkit

Data Structures

Vtk_ValQuery

typedef struct
{
enum Vtk_ValidationMech type;
char *host;
int port;
char *url;
Vtk_ProtocolDetails *protocolDetails;
Vtk_Buffer request;
Vtk_Buffer response;
void *vtkPrivateData;
} Vtk_ValQuery;

Description

This structure encapsulates a single validation query interaction with the VA.
The query can be for more than one certificate, but it is specific to a single VA.
An application uses this structure when it wants to communicate with the VA
directly instead of using the Toolkit to communicate with the VA. An
application may want to communicate directly when it wants perform
asynchronous I/0O or use SSL for the communication with the VA.

It supports, OCSP, CRT, and CRLs.

Parameters

type Validation mechanism used to validate certificates.

host Name of the VA host the application wants to
communicate.

port Port number of the VA host.

url URL for VA, for example http://ci.valicert.net:80.

protocolDetails Any additional protocol-specific information.
Currently, addition protocol information is available
only for CRLs.

request Buffer structure that contains the request to be sent

to the VA.

ValiCert Validator Toolkit 111

Toolkit Reference

response Buffer structure that contains the response sent from
the VA.Once the operation is complete, the
application needs to provides this structure to
release it.

vtkPrivateData Private data the Toolkit wants to include.

Notes

The actual communication between the application and the VA is
m done through the Vtk_ValidationValidateFromQueries. The
application must create this structure from the Vtk_Validation
structure using the Vtk ValidationGetQueries.

See Also

“Vtk_ProtocolDetails” on page 102
“Vtk_Validation” on page 106
“Vtk_ValidationGetQueries” on page 215
“Vtk_ValidationValidateFromQueries” on page 225
“Vtk_ValQueriesDelete” on page 227

112 ValiCert Validator Toolkit

Callback Functions

Callback Functions
The Toolkit provides callback functions to allow the application to return a

value that directs the Toolkit about how to proceed. The callbacks are
described separately in alphabetical order.

Vtk _ChainBuildCallBack

typedef int (VTK_CALLBACK*Vtk_ChainBuildCallback)

void *userHdl,
const Vtk_Cert *nextCert

Description

This callback function is used for certificate chain building. When an
application calls the Vtk_ValidationAddCertChain function, the application can
use this callback to provide a function pointer that will be called every time the
Toolkit discovers a new link in the certificate chain.

Once the application completes its processing, it returns a 0 or 1 to the
Toolkit. The values are as follows:
< VTK_OK—indicates that the Toolkit can add the certificate to the chain.

< 1—indicates that the Toolkit should not add the certificate and should
search for other certificates.

Parameters
userHdl Parameter that the Toolkit calls. The application
provides this parameter.
nextCert Certificate that is to be added to the chain

ValiCert Validator Toolkit 113

Toolkit Reference

Notes

None

See Also
“Vtk_ValidationAddCertChain” on page 202

114

ValiCert Validator Toolkit

Callback Functions

Vtk_CloseLogCallback

typedef void (VTK_CALLBACK *Vtk_CloselLogCallback)

const Vitk_Ctxt *pCtxt,
void* userHdI

Description
This callback function is used to close the log output stream.

When the Toolkit closes logging or the application calls Vtk_CloselLog, the
Toolkit calls this callback to close all resources opened in
Vtk_OpenLogCallback.

Parameters
pCitxt A pointer to the Toolkit context.
userHdl The value set in the Vtk_OpenLogCallback function,
which specifies the application specific output
structure.

Return Value

None

Notes

To override the default logging mechanism, use this function to close
m all open resources initialized by the Vtk_OpenLogCallback function.

To override the default logging mechanism, you must provide the
Vtk_WriteLogCallback, Vtk_OpenlLogCallback and
Vtk_CloselLogCallback functions.

See Also
“Vtk_CloselLog” on page 150
“Vtk_OpenLogCallback” on page 121

ValiCert Validator Toolkit 115

Toolkit Reference

“Vtk_WriteLogCallback” on page 123

116 ValiCert Validator Toolkit

Callback Functions

Vtk_DelegatedlssuerCallBack

typedef int
(VTK_CALLBACK*Vtk_DelegatedlssuerCallback)
(

void *userHdl,

const Vtk_Cert *delegatedCert,

const Vitk_Cert *trustedCert

Description

This callback function allows applications to examine and reject the certificate
used to validate the validation response. It is used when the signer of the
response is not directly part of the trusted VA or CA certificate store. The
Toolkit calls back the application during its checking of OCSP and CRT
responses in delegated trust models. It is only used in VA or CA delegated
trust paradigms.

Once the application completes its processing, it returns a 0 or 1 to the
Toolkit. The values are as follows:

0
o

VTK_OK—indicates that the certificate is good and can be used for
validating the response.

0
o

1—indicates the application has detected a problem and does not want
the Toolkit to use the certificate to validate the response.

Parameters
userHdl Parameter that the Toolkit calls. The application
provides this parameter.
delegatedCert Certificate that has been delegated and needs to be
checked
trustedCert CA or VA that issued the delegated certificate.

ValiCert Validator Toolkit 117

Toolkit Reference

Notes

This callback is set through the Vtk_CtxtSetOption.

See Also
“Vtk_CtxtLogType” on page 69
“Vtk_Callback” on page 85

118 ValiCert Validator Toolkit

Callback Functions

Vtk_OCSPSignCallBack

typedef int (VTK_CALLBACK*Vtk_OCSPSignCallback)

void *userHdl,
Vtk_Buffer *digest,
Vtk_Buffer *sigOut,
int maxSigOutBuf,
int padding

Description

This callback is used for signing OCSP requests. It enables the application to
add signatures to the outgoing requests. When the Toolkit gets to the point of
its processing where OCSP signing occurs, this callback directs the Toolkit to
call back the application. The application will then create the signature on the
token.

Once the application completes its processing, it returns a 0 or 1 to the
Toolkit. The values are as follows:

VTK _OK—indicates that the OCSP signature has been added, the Toolkit
can continue with its processing.

0
o

< l—indicates an error was encountered when the application tried to add
the signature, the Toolkit should not add the certificate.

Parameters

userHdl Parameter that the Toolkit calls. The application
provides this parameter.

digest DER encoding of hashed data bytes.

sigout Buffer that the Toolkit allocates for the application to
store the resulting signature.
Note: The application uses the length parameter to
set the size of the signature written.

maxSigOutBuf Size of the sigOut buffer allocated by the Toolkit.

padding Type of padding requests. Use 1 to request PKCS#1

padding.

ValiCert Validator Toolkit 119

Toolkit Reference

Notes

OCSP requests are not required to be signed.

This callback is set through the Vitk_CtxtSetOption.

See Also
“Vtk_CtxtLogType” on page 69
“Vtk_LogOptions” on page 99

120

ValiCert Validator Toolkit

Callback Functions

Vtk_OpenLogCallback

(

typedef Vtk uint32
(VTK_CALLBACK *Vtk_OpenLogCallback)

const Vitk_Ctxt *pCtxt,
void **userHdl

Description

This callback function is used to open the log output stream.

When the application calls Vtk_OpenLog to open logging the Toolkit uses this
callback function to initialize the logging resource.

Parameters

pCitxt

userHdl

Return Value

VTK_OK

IVTK_OK

A pointer to the Toolkit context.

An application specific value, which is passed to the
other logging callback functions. The Toolkit treats
this value as opaque.

This indicates the logging output stream was opened
correctly.

This indicates the application has detected a problem
and does not want the Toolkit to use logging.

ValiCert Validator Toolkit

121

Toolkit Reference

Notes

You can provide your own function to open an alternative store
m location like a database. In this case set a pointer to the structure
defining an alternative logging resource.

The userHdl value is passed to the Vtk _CloselLogCallback and
Vtk_WriteLogCallback functions.

You must provide all three callback functions to override the default
Toolkit logging mechanism.

See Also

“Vtk_CloselLogCallback” on page 115
“Vtk_WriteLogCallback” on page 123
“Vtk_LogOptions” on page 99
“Vtk_OpenLog” on page 189

122 ValiCert Validator Toolkit

Callback Functions

Vtk_WriteLogCallback

typedef void (VTK_CALLBACK *Vtk WriteLogCallback)

const Vitk_Ctxt *pCtxt,

enum Vtk_CtxtLogType type,
const char *pMsg,

void* userHdl

Description

This callback function specifies how the application processes logging
messages. When the Toolkit logs a message or the application calls
Vtk_WriteLog, the Toolkit uses this callback function to process log
messages.

The default Toolkit implementation is for the application to write log messages
to the log file (according to the options specified in the structure definition

Vtk_LogOptions).

Parameters
pCitxt A pointer to the Toolkit context.
type The type of log message (see the Vtk_CtxtLogType
enumerated type).
pMsg The log message.
userHdl The value which specifies the output logging

structure, set in the Vtk_OpenLogCallback function.

Return Value

None

Notes

To override the default logging mechanism, you must provide the
m Vtk_WriteLogCallback, Vtk_OpenLogCallback and
Vtk_CloseLogCallback functions.

ValiCert Validator Toolkit 123

Toolkit Reference

See Also

“Vtk_WriteLog” on page 233
“Vtk_LogOptions” on page 99
“Vtk_OpenLogCallback” on page 121
“Vtk_CloselLogCallback” on page 115

124

ValiCert Validator Toolkit

Functions

Functions

The functions are described separately in alphabetical order. Each description
indicates which function category it belongs to. Table 3 lists and briefly
describes the categories of functions and routines available in the Toolkit API.

Table 3. Function Categories

Category

Description

Certificate

Certificate Store

Extension

General

Validation

Context

Validation Query

Encapsulate X.509 certificates when interacting with the
Toolkit.

Group certificates in a single list.

Manipulate extension structure which encapsulates any
X.509 extension. An X.509 extension includes certificate
extensions as well as CRL, OCSP, and CRT protocol
extensions.

Initialization and release functions called for allocating
and releasing resources for the Toolkit.

Perform OCSP, CRT, or CRL validation checking for
certificates. Encapsulate one or more validation queries
for processing which can result in multiple queries to
different VVAs using different protocols, or limit the query
to a single protocol or VA.

Define the global Toolkit context and the certificate
validation context

Allow application to perform communication with the VA
to validate certificates instead of using the ToolKit to
communicate with the VA.

ValiCert Validator Toolkit

125

Toolkit Reference

Vtk_CertDelete

#include <vtk cert.h>
#include <vtk_defs.h>

void Vtk_CertDelete(
Vtk_Cert *cert [* input */
);

Description

This certificate encapsulation function releases memory allocated for
certificate data and its structure. Once this function completes successfully,
the Vtk_Cert structure becomes invalid.

Parameters
cert Certificate for which the memory is to be released.

Return Value

none The function has completed successfully and the
Vtk_Cert structure has been deleted.

Notes

The application must call this function for each certificate created
m using Vtk_CertNew and certificate returned using the
Vtk_CertGetlssuer function. If the application does not call
Vtk_CertDelete, memory leaks and other problems can occur. For
more information about the memory model employed by the Toolkit,
see “Toolkit Memory Model” on page 9.

See Also

“Vtk_Cert” on page 87
“Vtk_CertGetlssuer” on page 131
“Vtk_CertNew” on page 139

126 ValiCert Validator Toolkit

Functions

Vtk_CertGetExtensions

#include <vtk_ cert.h>
#include <vtk_defs.h>
#include <vtk_errs.h>

Vtk_uint32 Vtk_CertGetExtensions(
const Vitk Ctxt* ctxt, /* input */
const Vtk_Cert *from, /* input */
Vtk_Extensions **into /* output */

Description

This certificate encapsulation function returns a list of certificate extensions
for a specified certificate in the specified context. This function allows you to
directly get the list of extensions for the certificate without getting all of the
certificate information contained in the Vtk_Certinfo structure.

The Toolkit provides several other functions that allow your application to
parse the Vtk_Extensions structure and return the following:

< number of extensions in the list

< extension in the list based on its OID

< extension based on its position in the extension list

Parameters
ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.
from Pointer to the certificate for which the extensions are
to be returned.
into Pointer to structure into which the list of certificate

extensions is to be placed.

ValiCert Validator Toolkit 127

Toolkit Reference

Return Value

VTK_OK The function has completed successfully and the list
of certificate extensions has been placed into the
structure.

error code The function has failed. For information about

possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

The application must call the Vtk_ExtensionsDelete function for the
m structure returned by Vtk_CertGetExtensions. If the application does
not call Vtk_ExtensionsDelete, memory leaks and other problems
can occur. For more information about the memory model employed
by the Toolkit, see “Toolkit Memory Model” on page 9.

In the case that the certificate has no extension, the function returns
VTK_OK and sets the specified output structure to NULL.

See Also

“Vtk_CertInfo” on page 88
“Vtk_ExtensionGetByOid” on page 175
“Vtk_ExtensionsDelete” on page 181
“Vtk_ExtensionsGetCount” on page 183
“Vtk_ExtensionsGetith” on page 185

128 ValiCert Validator Toolkit

Functions

Vtk CertGetinfo

#include <vtk_ cert.h>
#include <vtk_err.h>

Vtk_uint32Vtk_CertGetinfo(
const Vtk_Ctxt* ctxt, /* input */
const Vtk_Cert *from, /* input */
Vtk_CertIinfo **dest /* output */

Description

This certificate encapsulation function returns detailed certificate information
for the specified certificate.

Parameters

ctxt

from

dest

Return Value

VTK_OK

error code

Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Pointer to the certificate for which the information is
to be returned.

Pointer to structure into which the information is to be
copied.

The function has completed successfully and the
buffer has been deleted.

The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

ValiCert Validator Toolkit

129

Toolkit Reference

Notes

The application must call the Vtk_CertinfoDelete function to release
m the memory allocated to the structure returned by the
Vtk_CertGetinfo function. If the application does not call
Vtk_CertinfoDelete, memory leaks and other problems can occur.
For more information about the memory model employed by the
Toolkit, see “Toolkit Memory Model” on page 9.

See Also
“Vtk_CertInfo” on page 88
“Vtk_CertIinfoDelete” on page 133

130 ValiCert Validator Toolkit

Functions

Vtk_CertGetlssuer

#include <vtk_ cert.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CertGetlssuer(
const Vtk Ctxt* ctxt, /* input */
const Vtk_Cert *cert, [* input */
Vtk_Cert **issuer [* output */

Description

This certificate encapsulation function returns the certificate of the CA that has
signed and issued the specified certificate. The function searches the
certificates in the specified context.

Parameters

ctxt

cert

issuer

Return Value

VTK_OK

error code

Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Pointer to the certificate for which the issuer is to be
returned.

Pointer to the issuer information extracted from the
Vtk_Cert structure.

The function has completed successfully and the
issuer information has been extracted and placed in
Vtk_Certinfo.

The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

ValiCert Validator Toolkit

131

Toolkit Reference

Notes

The application must call the Vtk_CertDelete function for the
m structure returned by Vtk_CertGetlssuer. If the application does not
call Vtk_CertDelete, memory leaks and other problems can occur.
For more information about the memory model employed by the
Toolkit, see “Toolkit Memory Model” on page 9.

See Also
“Vtk_CertInfo” on page 88
“Vtk_CertDelete” on page 126

132 ValiCert Validator Toolkit

Functions

Vik_CertinfoDelete

#include <vtk_ cert.h>
#include <vtk_defs.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CertinfoDelete(
Vtk_Certinfo *ci /* input */
);

Description

This certificate encapsulation function releases memory allocated to the
Vtk_CertInfo structure and the detailed certificate information. Once this
function completes successfully, the Vtk_Certinfo structure becomes invalid.

Parameters

ci Pointer to certificate information structure for which
the memory is to be released.

Return Value

VTK_OK The function has completed successfully and the
Vtk_CertInfo structure has been deleted.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

The application must call this function for certificate information
m returned using the Vtk_CertGetinfo function. If the application does
not call Vtk_CertinfoDelete, memory leaks and other problems can
occur. For more information about the memory model employed by
the Toolkit, see “Toolkit Memory Model” on page 9.

ValiCert Validator Toolkit 133

Toolkit Reference

See Also
“Vtk_CertInfo” on page 88
“Vtk_CertGetInfo” on page 129

134 ValiCert Validator Toolkit

Functions

Vtk_Certlnit

#include <vtk_ cert.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_Certlnit(
const Vtk_Ctxt* ctxt, [* input */
Vtk_Cert *dest, [* output */
const Vtk Buffer *source /* input */

Description

This certificate encapsulation function initializes the Vtk_Cert data structure
based on the data the application passes to it in the Vtk_Buffer structure.

Parameters
ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.
dest Pointer to the structure after it has been initialized
with the passed in data.
source Data the application passes to the Toolkit. The data

includes the encoding and decoding method
employed. The possible values are:

% VTK_DF_DER
% VTK_DF_BASE64

Return Value

VTK_OK The function has completed successfully and the
certificate has been initialized with the data passed
in.

error code The function has failed. For information about

possible error values, refer to Appendix A, "Error and
Status Codes."

ValiCert Validator Toolkit 135

Toolkit Reference

Notes

None

See Also

“Vtk_Buffer” on page 82
“Vtk_CertDelete” on page 126
“Vtk_CertLoadFromFile” on page 137
“Vtk_CertNew” on page 139

136

ValiCert Validator Toolkit

Functions

Vtk _CertLoadFromFile

#include <vtk_ cert.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CertLoadFromFile(

const Vtk_Ctxt* ctxt, [* input */
Vtk_Cert *into, [* output */
const char *fileName, /* input */

enum Vtk_DataFormat format /* input */

Description

This certificate encapsulation function initializes a Vtk_Cert data structure
using the data in the file that the application passes to it.

Parameters

ctxt

dest
fileName

format

Return Value

VTK_OK

error code

Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Pointer to the newly initialized Vtk_Cert structure.
Name of file that contains the certificate data.

Encoding and decoding method employed. The
possible values are:

% VTK_DF_DER
% VTK_DF_BASE64

The function has completed successfully and the
certificate structure has been initialized from the
named file.

The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

ValiCert Validator Toolkit

137

Toolkit Reference

Notes

Encoding information is passed in the Vtk_DataFormat enumeration.
m Compare this to the Vtk_Certlnit function which uses the Vtk_Buffer
structure to pass encoding and certificate information.

See Also
“Vtk_Certlnit” on page 135
“Vtk_CertDelete” on page 126

138 ValiCert Validator Toolkit

Functions

Vtk_CertNew

#include <vtk_ cert.h>
#include <vtk_err.h>

Vtk_Cert* Vtk_CertNew(
const Vitk_Ctxt *ctxt [* input */

);

Description
This certificate encapsulation function allocates memory for the Vtk_Cert
structure and creates an empty X.509 certificate structure.

Parameters

ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Return Value

Vtk_Cert The function has completed successfully. The
function returns the Vtk_Cert structure that has been
newly created and initialized.

NULL The function has failed.

Notes

This function must be called before any other certificate

m encapsulation functions. Once the empty certificate structure is
created, the application can populate the certificate with data using
the Vitk_Certlnit and Vtk_CertLoadFromFile. The application must
call Vtk_CertDelete to release the memory allocated by this function
when it no longer needs the structure.

ValiCert Validator Toolkit 139

Toolkit Reference

See Also

“Vtk_Cert” on page 87
“Vtk_CertDelete” on page 126
“Vtk_CertGetlssuer” on page 131
“Vtk_Certlnit” on page 135
“Vtk_CertLoadFromFile” on page 137

140

ValiCert Validator Toolkit

Functions

Vtk_CertStoreAddCert

#include <vtk_ cert.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CertStoreAddCert(

const Vtk_Ctxt *ctxt, [* input */
Vtk_CertStore *dest, [* output */
const Vitk_Cert *aCert [* input */
);
Description

This certificate store function adds a single certificate to the Vtk_CertStore
structure which was created using the Vtk_CertStoreNew function.

Parameters

ctxt

dest

aCert

Return Value

VTK_OK

error code

Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Pointer to certificate store to which this certificate is
to be added. A certificate store is a container for one
or more certificates.

Pointer to the certificate that is to be added to the
store. This certificate is contained in an initialized
structure.

The function has completed successfully and the
certificate has been added to the certificate store.

The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

ValiCert Validator Toolkit

141

Toolkit Reference

Notes

Vtk_Cert structure is used to encapsulate the X.509 certificates.
m Compare this to the VtkCertStoreAddRaw function which uses the
Vtk_Buffer structure to pass encoding and certificate information.

To add several certificates, the application can call this function
several times or more conveniently, the Vtk_CertStoreLoadFromFile
to add several certificates at one time.

A certificate store can contain certificates that use different encoding
formats. There is no practical limit on the number of certificates that a
certificate store can contain.

The application is responsible for releasing the memory allocated to
the certificate it has passed in to the function.

See Also
“Vtk_CertStoreAddCertRaw” on page 143
“Vtk_CertStoreLoadFromFile” on page 146

142 ValiCert Validator Toolkit

Functions

Vtk_CertStoreAddCertRaw

#include <vtk_ cert.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CertStoreAddCertRaw(
const Vtk_Ctxt *ctxt, [* input */
Vtk_CertStore *dest, [* output */
const Vitk Buffer *certData /* input */

Description

This certificate store function adds a single certificate to the Vtk_CertStore
which was created using the Vtk_CertStoreNew function. The certificate that
is to be added is not within an initialized structure; however, it is created from
the user supplied data contained in the buffer.

Parameters

ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

dest Certificate store to which this certificate is to be
added. A certificate store is a container for one or
more certificates.

certdata Certificate data that is to be added to the certificate

store. It is not within an initialized certificate structure.
Data can represent the certificate encoded using
DER or Base64.

Return Value

VTK_OK The function has completed successfully and the
certificate has been added.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

ValiCert Validator Toolkit 143

Toolkit Reference

Notes

Encoding and certificate information is passed in the Vtk_Buffer
m structure. Compare this to the VtkCertStoreAddCert function which
uses the Vtk_Cert structure to encapsulate the X.509 certificate.

This function is provided as a convenience to allow an application to
add a certificate that is not contained in an initialized structure.

See Also

“Vtk_Buffer” on page 82

“Vtk_Cert” on page 87
“Vtk_CertStoreAddCert” on page 141
“Vtk_CertStoreNew” on page 148

144 ValiCert Validator Toolkit

Functions

Vtk_CertStoreDelete

#include <vtk_ cert.h>
#include <vtk_err.h>

void Vtk_CertStoreDelete(
Vtk_CertStore *toFree [* input */

);

Description

This certificate store function releases memory and resources previously
allocated by the Vtk_CertStoreNew function. Once this function completes
successfully, the Vtk_CertStore structure becomes invalid.

Parameters

toFree Pointer to the Vtk_CertStore structure for which
memory and resources are to be released

Return Value

none The function has completed successfully and the
certificate store has been deleted.

Notes

The application must call this function for each certificate store
m created using Vtk_CertStoreNew. If the application does not call
Vtk_CertStoreDelete, memory leaks and other problems can occur.
For more information about the Toolkit memory model, see “Toolkit
Memory Model” on page 9.

See Also

“Vtk_CertStoreNew” on page 148

ValiCert Validator Toolkit 145

Toolkit Reference

Vtk_CertStoreLoadFromFile

#include <vtk cert.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CertStoreLoadFromFile(

const Vtk_Ctxt *ctxt, [* input */
Vtk_CertStore *dest, [* output */
const char *fileName, [* input */

enum Vtk_DataFormat format [* input */

Description

This certificate store function initializes a Vtk_CertStore data structure using
the data in the file that the application passes to it.

Parameters

ctxt

dest
filename

format

Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Pointer to the newly initialized Vtk_CertStore
structure.

File that contains the certificate data. The file can
contain one or more certificates.

Encoding and decoding method employed. The
possible values for this enumeration are:
% VTK_DF_DER

% VTK_DF_BASE64

146

ValiCert Validator Toolkit

Functions

Return Value

VTK_OK The function has completed successfully and the
certificate store structure has been initialized from
the named file.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

Encoding information is passed in the Vtk_DataFormat enumeration.
m Compare this to the VtkCertStoreAddCert function which uses the
Vtk_Cert structure to pass certificate information and the
Vtk_CertStoreAddRaw function which uses the Vtk_Buffer structure
to pass encoding and certificate information.

See Also
“Vtk_CertStoreAddCert” on page 141
“Vtk_CertStoreAddCertRaw” on page 143

ValiCert Validator Toolkit 147

Toolkit Reference

Vtk_CertStoreNew

#include <vtk cert.h>
#include <vtk_err.h>

Vtk_CertStore* Vtk_CertStoreNew(
const Vtk_Ctxt *ctxt [* input */

);

Description

This certificate store function creates and initializes an empty Vtk_CertStore
structure which can be used to group and store VA or CA certificates. During
the creation phase, this function allocates memory and resources for the
structure. The certificate store is used during query validation and chain
building operations.

Parameters

ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Return Value

Vtk_CertStore The function has completed successfully. The
function returns the Vtk_CertStore structure that has
been newly created and initialized.

NULL The function has failed.

148 ValiCert Validator Toolkit

Functions

Notes

Once the certificate store structure is created, the application can
m add certificates individually (Vtk_CertStoreAddCert), as raw encoded
data (Vtk_CertStoreAddRaw), or several at a time from a file
(Vtk_CertStoreLoadFromFile).

The application must call the Vtk_CertStoreDelete function for each
certificate store created using Vtk_CertStoreNew. If the application
does not call Vtk_CertStoreDelete, memory leaks and other
problems can occur. For more information about the Toolkit memory
model, see “Toolkit Memory Model” on page 9.

See Also
“Vtk_CertStoreDelete” on page 145

ValiCert Validator Toolkit 149

Toolkit Reference

Vtk_CloselLog

include <vtk_error.h>
include <vtk_defs.h>

void Vtk_CloseLog(Vtk_Ctxt *pCtxt);

Description
Call this function to stop Toolkit logging.

This function calls the Vtk_CloseLogCallback function and removes the
logging options from the context. If the user’s callback function is not defined,
all log messages are flushed to the log file and the file is closed.
Parameters

pCtxt A pointer to the Toolkit context.

Return Value

None
Notes
None

See Also

“Vtk_CloselLogCallback” on page 115
“Vtk_OpenLog” on page 189
“Vtk_WriteLog” on page 233

150 ValiCert Validator Toolkit

Functions

Vtk CRLValidateCert

);

#include <vtk valid.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CRLValidateCert(

const Vtk_Ctxt *ctxt, [* input */
const Vtk_Cert *cert, [* input */
Vtk_uint32 *status, [* output */

Vtk_ValRespDetails **respDetails,

Vtk_ValRespSingleCertDetails *certDetails

[* input/output */

[* input/output */

Description

This validation function checks whether the specified certificate is on the CRL
and returns a status information about the certificate. The application can
optionally specify to return detailed revocation information for the entire
validation response or the single certificate.

Parameters

ctxt

cert

status

respDetails

Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Pointer to the certificate to check for in the CRL.

Pointer to the status information for the certificate.
The status values are defined as a bit field.
Therefore, a single status value can represent
multiple status codes. For a list of the possible
certificate status codes, see Appendix A, "Error and
Status Codes."

Address to the pointer to the detailed revocation
information for the entire response. (It points to a
structure allocated by the Toolkit in this call.) This
function returns the requested information in the
structure. In cases where the result is not needed,
the application can pass in NULL. The application
must release this structure using the
Vtk_ValRespDetailsDelete function.

ValiCert Validator Toolkit

151

Toolkit Reference

certDetails Address to the pointer to the detailed revocation
information for a single certificate response. (It points
to a structure allocated by the Toolkit in this call.)
This function returns the requested information in the
structure. In cases where the result is not needed,
the application can pass in NULL. The application
must release this structure using the
Vtk_ValRespSingleCertDetailsDelete function.

Return Value

VTK_OK The function has completed successfully and if
specified, returns the Vtk_ValRespDetails or
Vtk_ValRespSingleCertDetail structure.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

m The function uses the configuration data in the context to obtain the
CRL.

Unlike most validation functions, this function does not require the
Vtk_Validation structure.

If the application specifies Vtk_RespDetails or
Vtk_ValRespSingleCertDetails, but the VA does not have any
information for the specified certificate, the function returns
successfully (VTK_OK) and sets the specified structure to NULL.

The application must release these structures using the
Vtk_ValRespDetailsDelete or Vtk_ValRespSingleCertDetailsDelete
function.

See Also

“Vtk_ValRespDetails” on page 107
“Vtk_ValRespSingleCertDetails” on page 109
“Vtk_ValRespDetailsDelete” on page 229
“Vtk_ValRespSingleCertDetailsDelete” on page 231

152 ValiCert Validator Toolkit

Functions

Vik CtxtAddCert

#include <vtk_ctxt.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CtxtAddCert(

Vtk_Ctxt *ctxt, [* input */
int type, [* input */
const Vtk_Cert *cert [* input */

Description

This Toolkit context function adds an individual certificate to the list of trusted
certificates maintained by the Toolkit in the context structure. The application
can add a VA or CA certificate to the list, depending on the specified type.

Parameters

ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated. The certificate is to be added to this
structure.

type Type of certificate to add to the trusted certificate list.
The possible values are:
< VTK_VA_CERT for a trusted VA certificate

< VTK_TRUSTED_CA_CERT for trusted CA
certificate

VTK_INTERMEDIATE_CERT for intermediate
CA certificate

0
o

These bit fields can be combined.

cert Certificate to add to the trusted list.

ValiCert Validator Toolkit 153

Toolkit Reference

Return Value

VTK_OK The function has completed successfully and the
certificate has been added.

error code The function has failed. For information about

possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

m The application must delete the certificate using the Vtk_CertDelete
function.

See Also
“Vtk_CtxtAddCerts” on page 155
“Vtk_CtxtNew” on page 160

154 ValiCert Validator Toolkit

Functions

Vtk CtxtAddCerts

#include <vtk_ctxt.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CtxtAddCerts(
Vtk_Ctxt* ctxt, [* input */
int type, [* input */
const Vtk_CertStore *certs /* input */

Description

This Toolkit context function adds an one or more certificates to the list of
trusted certificates maintained by the Toolkit in the context structure. The
application can add a VA, CA or both types of certificates to the list.

Parameters

ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated. The certificate is to be added to this
structure.

type Type of certificate to add to the trusted certificate list.
The possible values are:
< VTK_VA_CERT for a trusted VA certificate
% VTK_TRUSTED_CA_CERT for trusted CA
certificate
VTK_INTERMEDIATE_CERT for intermediate
CA certificate
These bit fields can be combined.

0
o

certs Certificate store (list of certificates) to add to the
trusted list.

ValiCert Validator Toolkit 155

Toolkit Reference

Return Value

VTK_OK

error code

Notes

None

See Also

The function has completed successfully and the
buffer has been deleted.

The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

“Vtk_CtxtAddCert” on page 153

“Vtk_CtxtNew” on page 160

156

ValiCert Validator Toolkit

Functions

Vtk CtxtDelete

#include <vtk_ctxt.h>
#include <vtk_err.h>

void Vtk_CtxtDelete(
Vtk_Ctxt *toFree [* input */

);

Description

This Toolkit context function releases memory and resources previously
allocated by the Vtk_CtxtNew function. Once this function completes
successfully, the Vtk_Ctxt structure becomes invalid.

Parameters

toFree Pointer to the Vtk_Ctxt structure for which memory
and resources are to be released.

Return Value

none The function has completed successfully and the
validation context has been deleted.

Notes

The application must call this function for each context created using
m Vtk_CtxtNew. If the application does not call Vtk_CtxtDelete,
memory leaks and other problems can occur. For more information
about the Toolkit memory model, see “Toolkit Memory Model” on
page 9.

See Also
“Vtk_CtxtNew” on page 160

ValiCert Validator Toolkit 157

Toolkit Reference

Vtk_CtxtGetOption

#include <vtk_ctxt.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CtxtGetOption(
const Vtk_Ctxt* ctxt, [* input */
Vtk_CtxtOption *outData /* output */

Description

This Toolkit context function returns current context option information for the
specified context. The size of the structure varies with the type of information
currently set for the context.

For a comprehensive list of the supported context option types, see
“Vtk_CtxtLogType” on page 69.

Parameters
ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated. The structure for which this function
gets the option information.
outData Option information returned. The information

depends on the option type currently set.

Return Value

VTK_OK The function has completed successfully and the
Vtk_CtxtOption structure with the current option
information has been returned to the application.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

158 ValiCert Validator Toolkit

Functions

Notes

The application must release the returned Vtk_CtxtOption structure
m using the Vtk_CtxtOptionDeleteContent function.

See Also
“Vtk_CtxtLogType” on page 69
“Vtk_CtxtSetOption” on page 166

ValiCert Validator Toolkit 159

Toolkit Reference

Vtk CtxtNew

#include <vtk_ctxt.h>
#include <vtk_err.h>

Vtk_Ctxt* Vtk_CtxtNew(void);

Description

This Toolkit context function creates, initializes, and allocates memory for a
validation context structure. This structure contains global information that is
persistent over validation checks such as the VA URL for a specific CA and
trusted certificates for VAs and CAs.

By default the context uses the Global VA Service as its default VA and CRT
as the default protocol. The context contains pre-loaded ValiCert Global VA
Service certificates and its URL defined by the Vtk_GVAS_URL constant.

Parameters

None

Return Value

Vtk_Ctxt The function has completed successfully. The
function returns the Vtk_Ctxt structure that has been
newly created and initialized.

NULL The function has failed.

Notes

All Toolkit calls require a Vtk_Ctxt parameter. Before calling this
m function, or any Toolkit function, the application must first call the
Vtk_Init function.

160 ValiCert Validator Toolkit

Functions

See Also

“Vtk_CtxtAddCert” on page 153
“Vtk_CtxtAddCerts” on page 155
“Vtk_CtxtDelete” on page 157
“Vtk_Init” on page 188

ValiCert Validator Toolkit 161

Toolkit Reference

Vtk_CtxtOptionDeleteContent

#include <vtk_ctxt.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CtxtOptionDeleteContent(
Vtk_CtxtOption *data

);

Description

This Toolkit context function releases memory previously allocated to the
Vtk_CtxtOption structure with the Vtk_CtxtGetOption function. Once this
function completes successfully, the Vtk_CtxtOption structure becomes
invalid. Other resources allocated to the structure are not released.

Parameters

data Pointer to the Vtk_CtxtOption structure for which
memory and resources are to be released.

Return Value

VTK_OK The function has completed successfully and the
context option structure has been deleted.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

162 ValiCert Validator Toolkit

Functions

Notes

Only the context option data contained within the structure is
m released. The application must call this function for each context
option structure returned from the Vtk_CtxtGetOption function. If the
application does not call Vtk_CtxtOptionDeleteContent, memory
leaks and other problems can occur. For more information about the
Toolkit memory model, see “Toolkit Memory Model” on page 9.

See Also
“Vtk_CtxtGetOption” on page 158

ValiCert Validator Toolkit 163

Toolkit Reference

Vtk CtxtSetDefaultVa

#include <vtk_ctxt.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CtxtSetDefaultVa(

Vtk_Ctxt* ctxt, /* input */
const char *vaUrl, [* input */
enum Vtk_ValidationMech mech [* input */
);
Description

This Toolkit context function sets the default VA for the context passed in. The
VA URL and validation mechanism specified in this function will be used as
the default for all validations performed without an explicit VA.

When a context is newly created using the Vtk_CtxtNew function, it sets the
default VA to the Global VA Service and CRT as the default protocol. The default
URL for the Global VA Service is specified in the Vtk_GVAS_URL constant.

Parameters

ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated. It is the Toolkit context for which this
function sets the default VA.

vaurl URL for default VA, for example
http://ocsp.valicert.net:80.

mech Validation mechanism employed to validate

certificates. The possible values are:
< VTK_VM_CRT—Certificate Revocation Trees

< VTK_VM_OCSP—Online Certificate Status
Protocol

164 ValiCert Validator Toolkit

Functions

Return Value

VTK_OK The function has completed successfully and the
default VA has been set.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

The same default VA can have different protocols for different

m contexts.

See Also
“Vtk_CtxtNew” on page 160

ValiCert Validator Toolkit 165

Toolkit Reference

Vtk_CtxtSetOption

#include <vtk_ctxt.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CtxtSetOption(
Vtk_Ctxt* ctxt, [* input */
Vtk_CtxtOption *data /* input */

Description

This Toolkit context function allows the application to set a specific option for
the specified context. The application sets the option through the
Vtk_CtxtOption structure which identifies the option type. For a
comprehensive list of the supported context option types, see
“Vtk_CtxtLogType” on page 69.

Parameters

ctxt

data

Return Value

VTK_OK

error code

Notes

None

Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated. The Toolkit context for which this
function sets the option.

Option information to be set. The information
depends on the option type.

The function has completed successfully and the
option has been set.

The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

166

ValiCert Validator Toolkit

Functions

See Also
“Vtk_CtxtLogType” on page 69
“Vtk_CtxtGetOption” on page 158

ValiCert Validator Toolkit 167

Toolkit Reference

Vtk _CtxtSetValnfo

#include <vtk_ctxt.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_CtxtSetValnfo(

Vtk_Ctxt* ctxt, [* input */
const Vitk_Cert *caCert, [* input */
const char *vaUrl, [* input */
enum Vtk_ValidationMech mech, [* input */
const Vtk_ProtocolDetails *protDetails,

[* input */
const Vtk_CertStore *vaCerts [* input */

Description

This Toolkit context function sets validation information about the VA that is
validating certificates issued by a specific CA. The VA validation information
includes the VA URL, validation mechanism and optionally, the list of trusted
VA certificates to be used with this VA or CA.

The VA URL and validation mechanism specified in this function will be used
as the default for all validations performed for certificates issued by this CA. If
you specify CRL as the validation mechanism, you must also set details about
the protocol in the Vtk_ProtocolDetails structure.

You are not required to set the list of trusted certificates using this function.
However, if you do not, the VA certificates set through the Vtk_CtxtAddCert
and Vtk_CtxtAddCerts calls are used.

Parameters

ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated. The Toolkit context for which this
function sets VA information.

caCert CA for which this validation information should be
set.

vaUrl URL for default VA, for example

http://ocsp.valicert.net:80.

168

ValiCert Validator Toolkit

Functions

mech

protDetails

vaCerts

Return Value

VTK_OK

error code

Notes

None

See Also

Validation mechanism employed to validate
certificates. The possible values are:

< VTK_VM_CRT—Certificate Revocation Tree

% VTK_VM_OCSP—Online Certificate Status
Protocol

< VTK_VM_CRL—Certificate Revocation List
Any additional CRL protocol-specific information.

List of trusted VA certificates. This is optional. If not
specified, the list of trusted VA certificates set
through the Vtk_CtxtAddCert and Vtk_CtxtAddCerts
is used.

The function has completed successfully and the VA
information is set.

The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

“Vtk_CRLProtocolDetails” on page 91

“Vtk_ProtocolDetails” on page 102
“Vtk_CtxtAddCert” on page 153

“Vtk_CtxtAddCerts” on page 155

ValiCert Validator Toolkit

169

Toolkit Reference

Vtk_ErrorToString

);

#include <vtk_errs.h>

const char *Vtk_ErrorToString(
Vtk_uint32 errorCode /* input */

Description

This return code translation routine returns a static string representation of the
specified return code.

Parameters

errorCode

Return Value

char *

NULL

Notes

Error code to be translated. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

The function has completed successfully and the
error code has been translated. The corresponding
symbol for this value is VTK_OK.

The function has failed.

The return value must not be deleted.

This function is not MT-Safe.

See Also

“Vtk_ErrorToString_r" on page 171

“Vtk_StatusToStrings” on page 191

170

ValiCert Validator Toolkit

Functions

Vtk_ErrorToString_r

#include <vtk_errs.h>

const char *Vtk_ErrorToString_r(
Vtk_uint32 errorCode, /* input /*
char *buf, /* input/output /*
int buflen [* input /*

Description

This function converts the specified Toolkit error code to a string. The caller
must supply a buffer buf of length buflen to store the result. Toolkit copies
the error string to the buffer. If the buffer is too small the string is truncated. A
buffer of 128 bytes should be sufficient.

Parameters

errorCode

buf

buflen

Return Value

char *
NULL

Notes

The error code to be translated. For information
about possible error values, refer to
Appendix A, "Error and Status Codes."

The buffer into which the function copies the error.
The length of the bulffer.

The supplied buf pointer.

The function has failed due to an invalid error code.

The return value must not be deleted.

This is an MT-Safe version of Vtk_ErrorToString

ValiCert Validator Toolkit

171

Toolkit Reference

See Also
“Vtk_ErrorToString” on page 170
“Vtk_StatusToStrings” on page 191

172 ValiCert Validator Toolkit

Functions

Vtk _ExtensionDelete

#include <vtk_ cert.h>
#include <vtk_defs.h>
#include <vtk_errs.h>

void Vtk_ExtensionDelete(
Vtk_Extension *ext [* input */

);

Description

This extension function deletes an extension structure that contains the
search results from the Vtk_ExtensionGetByOid or Vtk_ExtensionGetith
functions.

Once this function completes successfully, the Vtk_Extension structure
becomes invalid.

Parameters
ext Extension structure for which the memory is to be
released.
Return Value
none The function has completed successfully and the

Vtk_Extension structure has been deleted.

ValiCert Validator Toolkit 173

Toolkit Reference

Notes

The structure deleted by this function is different from the
m Vtk_Extensions structure returned by the Vtk_CertGetExtensions
function

The application must call this function for the extension structure
returned using the Vtk_ExtensionGetByOid or Vtk_ExtensionGetith
function. If the application does not call Vtk_ExtensionDelete,
memory leaks and other problems can occur. For more information
about the memory model employed by the Toolkit, see “Toolkit
Memory Model” on page 9.

See Also

“Vtk_Extension” on page 97
“Vtk_ExtensionGetByOid” on page 175
“Vtk_Extensionlnit” on page 177
“Vtk_ExtensionNew” on page 179
“Vtk_ExtensionsGetith” on page 185

174 ValiCert Validator Toolkit

Functions

Vtk_ExtensionGetByOid

#include <vtk_ cert.h>
#include <vtk_defs.h>
#include <vtk_errs.h>

Vtk_uint32 Vtk_ExtensionGetByOid(

const Vitk_Ctxt *ctxt, [* input */
const Vtk_Extensions *exts, /* input */
const Vtk Buffer *oid, [* input */
Vtk_Extension **dest [* output */
);
Description

This extension function can be used to search for a specific Object Identifier
(OID) in the list of extensions currently in Vtk_Extensions structure. This
search function can be used to search a list of any type of extensions, that is
certificate, OCSP, CRT, or CRL extensions.

Parameters

ctxt Pointer to Toolkit context created using the Vtk_CtxtNew
function and for which memory has been allocated.

exts Pointer to extensions structure that is to be parsed and for
which memory has been allocated. It can be created using
the Vtk_CertGetExtensions function or through the
Vtk_ValRespDetails or Vtk_ValRespSingleCertDetails
structure.

oid Pointer to the OID to search for within the Vtk_Extensions
structure. The OID can be specified in dot notation.

dest Pointer to structure into which the extensions meeting the

search criteria are to be placed.

ValiCert Validator Toolkit 175

Toolkit Reference

Return Value

VTK_OK The function has completed successfully and the
Vtk_Extension structure with the specified OID has
been returned.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."
Notes

The application must call Vtk_ExtensionDelete when finished with
m the returned structure, otherwise memory leaks and other problems
can occur. For more information about the memory model employed
by the Toolkit, see “Toolkit Memory Model” on page 9.

See Also

“Vtk_ValRespDetails” on page 107
“Vtk_ValRespSingleCertDetails” on page 109
“Vtk_CertGetExtensions” on page 127
“Vtk_ErrorToString_r" on page 171

176 ValiCert Validator Toolkit

Functions

Vtk _Extensionlinit

#include <vtk_ cert.h>
#include <vtk_defs.h>
#include <vtk_errs.h>

Vtk_uint32 Vtk_Extensionlnit(
const Vitk_Ctxt *ctxt, [* input */

Vtk_Extension *ext, [* output */
const Vtk Buffer *oid, /* input */
int critical, [* input */
const Vtk_Buffer *value /* input */
);
Description

This extension function initializes a Vtk_Extension data structure based on
the data the application passes to it.

Parameters

ctxt Pointer to the Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

ext Pointer to the structure created using the
Vtk_ExtensionNew function.

oid Pointer to the object identifier for this extension. The
Vtk_DataFormat type is VTK_DF_STRING, a null-
terminated printable string in dot format, that is
1234

critical Value that determines whether the extension is
critical. The possible values are 0 and nonzero. If the
value is 0, the extension is not critical. If the value is
nonzero, the extension is critical.

value Pointer to the buffer that contains the data to be
placed in the extension structure. The content of this
buffer will be encoded as an ASN1 octet string for the
extension.

ValiCert Validator Toolkit 177

Toolkit Reference

Return Value

VTK_OK

error code

Notes

None

See Also

The function has completed successfully and the
Vtk_Extension structure has been initialized with the data
passed in.

The function has failed. For information about possible
error values, refer to Appendix A, "Error and Status
Codes."

“Vtk_Extension” on page 97

“Vtk_ErrorToString_r" on page 171

“Vtk_ExtensionNew” on page 179

178

ValiCert Validator Toolkit

Functions

Vtk ExtensionNew

#include <vtk_ cert.h>
#include <vtk_defs.h>
#include <vtk_errs.h>

Vtk_Extension* Vtk_ExtensionNew(
const Vitk Ctxt *ctxt [* input */

);

Description

This extension function allocates memory for the Vtk_Extension structure and

creates an empty extension structure.

Parameters

ctxt Pointer to the Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Return Value

Vtk_Extension The function has completed successfully. The
function returns the Vtk_Extension structure that has
been newly created and initialized.

NULL The function has failed.

Notes

This function must be called before initializing the extension data with
m application information. Once the extension structure is created, the
application can populate the extension with data using the
Vtk_Extensioninit. The application must call Vtk_ExtensionDelete to
release the memory allocated by this function when it no longer
needs the structure.

ValiCert Validator Toolkit

179

Toolkit Reference

See Also

“Vtk_Extension” on page 97
“Vtk_ErrorToString_r” on page 171
“Vtk_Extensionlnit” on page 177

180

ValiCert Validator Toolkit

Functions

Vtk _ExtensionsDelete

#include <vtk_ cert.h>
#include <vtk_defs.h>
#include <vtk_errs.h>

void Vtk_ExtensionsDelete(
Vtk_Extensions *ext [* input */

);

Description

This extensions function releases memory allocated for an extensions
structure created by the Vtk_CertGetExtensions function.

Once this function completes successfully, the Vtk_Extensions structure
becomes invalid.

Parameters
ext Extensions structure for which the memory is to be
released.
Return Value
none The function has completed successfully and the

Vtk_Extensions structure has been deleted.

ValiCert Validator Toolkit 181

Toolkit Reference

Notes

The application must call this function for the extensions structure
m returned using the Vtk_CertGetExtensions function. If the application
does not call Vtk_ExtensionsDelete to release memory allocated to
this structure, memory leaks and other problems can occur. For more
information about the memory model employed by the Toolkit, see
“Toolkit Memory Model” on page 9.

The Toolkit also provides the Vtk_ExtensionDelete function for
deleting an individual Vtk_Extension structure returned as part of the
various extension parsing functions.

See Also

“Vtk_Extensions” on page 98
“Vtk_ValRespDetails” on page 107
“Vtk_ValRespSingleCertDetails” on page 109
“Vtk_CertGetExtensions” on page 127
“Vtk_ErrorToString_r" on page 171

182 ValiCert Validator Toolkit

Functions

Vtk _ExtensionsGetCount

#include <vtk_ cert.h>
#include <vtk_defs.h>
#include <vtk_errs.h>

int Vtk_ExtensionsGetCount(
const Vitk_Ctxt *ctxt, [* input */
const Vtk_Extensions *exts /* input */

Description

This extension function can be used to determine the number of extensions

currently in the Vtk_Extensions structure for the specified context. This
function can be used to search a list of any type of extensions, that is

certificate, OCSP, CRT, or CRL extensions.

Parameters

ctxt

exts

Return Value

val

Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Pointer to extensions structure that is to be parsed
and for which memory has been allocated. It can be
created using the Vtk_CertGetExtensions function or
through the Vtk_ValRespDetails or
Vtk_ValRespSingleCertDetails structure.

The function has completed successfully and this is
the number of extensions within the Vtk_Extensions
structure.

No extensions are present.

ValiCert Validator Toolkit

183

Toolkit Reference

Notes

None

See Also

“Vtk_ValRespDetails” on page 107
“Vtk_ValRespSingleCertDetails” on page 109
“Vtk_CertGetExtensions” on page 127

184

ValiCert Validator Toolkit

Functions

Vtk _ExtensionsGetith

#include <vtk_ cert.h>
#include <vtk_defs.h>
#include <vtk_errs.h>

Vtk_uint32 Vtk_ExtensionsGetith(

const Vitk_Ctxt *ctxt, [* input */
const Vtk Extensions *exts, [* input */
int i, [* input */
Vtk_Extension **dest [* output */

Description

This extension function can be used to search for a specific occurrence of an
extension within the list of extensions currently in Vtk_Extensions structure.
This search function can be used to search a list of any type of extensions,

that is certificate, OCSP, CRT, or CRL extensions.

Parameters

ctxt Pointer to Toolkit context created using the Vtk_CtxtNew
function and for which memory has been allocated.

exts Pointer to extensions structure that is to be parsed and for
which memory has been allocated. It can be created using
the Vtk_CertGetExtensions function or through the
Vtk_ValRespDetails or Vtk_ValRespSingleCertDetails
structure

i Integer index into the extensions list. The index is 0 based.

The application can call the Vtk_ExtensionsGetCount
function to determine the total number of extensions.

dest Pointer to structure into which the extensions meeting the
search criteria is to be placed.

Return Value

VTK_OK The function has completed successfully and the
structure has been returned.

ValiCert Validator Toolkit

185

Toolkit Reference

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

The application must call Vtk_ExtensionDelete when finished with
m the returned structure, otherwise memory leaks and other problems
can occur. For more information about the memory model employed
by the Toolkit, see “Toolkit Memory Model” on page 9.

See Also

“Vtk_ValRespDetails” on page 107
“Vtk_ValRespSingleCertDetails” on page 109
“Vtk_CertGetExtensions” on page 127
“Vtk_ErrorToString_r" on page 171
“Vtk_ExtensionsGetCount” on page 183

186 ValiCert Validator Toolkit

Functions

Vtk_Finish

#include <vtk_ctxt.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_Finish(void);

Description

This general purpose function releases resources that have been allocated to
the Toolkit. The application must call this function last after completing its
work with the Toolkit.

Parameters

None

Return Value

VTK_OK The function has completed successfully and the
Toolkit resources have been released.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

m This function must be called only once.

See Also
“Vtk_Init” on page 188

ValiCert Validator Toolkit 187

Toolkit Reference

Vtk_Init

#include <vtk_ctxt.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_Init(void);

Description

This general purpose function initializes Toolkit and its communication library.
The application must call this function before using the Toolkit.

Parameters

None

Return Value

VTK_OK The function has completed successfully and the
Toolkit and its communication library have been
initialized.

error code The function has failed. For information about

possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

This function must be called only once.

See Also
“Vtk_Finish” on page 187

188 ValiCert Validator Toolkit

Functions

Vtk_OpenLog

include <vtk_error.h>
include <vtk_defs.h>

Vtk_uint32 Vtk_OpenLog(
Vtk_Ctxt *pCitxt, [* input */
const Vtk_LogOptions *pLogOptions

[* input */

Description

This function initializes and commences logging for the specified Toolkit

context.

If no user defined callback was specified, a text log file is opened with the
name and mode set in log options.

Parameters

pCixt
pLogOptions

Return Value

VTK_OK

error code

Notes

None

See Also

A pointer to the Toolkit context.

Log options (see the data structure Vtk_LogOptions
for details).

The function has completed successfully.

The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

“Vtk_LogOptions” on page 99

“Vtk_OpenLogCallback” on page 121

ValiCert Validator Toolkit

189

Toolkit Reference

“Vtk_CloselLog” on page 150
“Vtk_WriteLog” on page 233

190 ValiCert Validator Toolkit

Functions

Vtk_StatusToStrings

);

#include <vtk_errs.h>

const char **Vtk_StatusToString(
Vtk_uint32 status /* input/output */

Description

This translation routine returns a null-terminated array of strings containing
text associated with every value contained in the status value. The end of the
array is indicated by a NULL entry.

Parameters

status

Return Value

char **

NULL

Notes

Status value to be translated. The status value is
defined as a bit field which can represent
multiple status codes.

The function has completed successfully and the
status values have been translated into the requisite
number of strings, one for each status code. The
corresponding symbol for this value is VTK_OK.

The function has failed.

The application must call the Vtk_StatusStringsDelete function for
m each array created.

See Also

“Vtk_ErrorToString” on page 170

“Vtk_StatusStringsDelete” on page 192

ValiCert Validator Toolkit

191

Toolkit Reference

Vtk_StatusStringsDelete

#include <vtk_err.h>

void Vtk_StatusStringsDelete(
char** statusStrings /* input */

);

Description

This translation function releases memory and resources previously allocated
by the Vtk_StatusToStrings function. Once this function completes
successfully, the resources are released.

Parameters
char Pointer to the status strings that are to be deleted.
Return Value

none The function has completed successfully and the
statusStrings has been deleted.

Notes

The application must call this function for each status string created
using Vtk_StatusToStrings. If the application does not call
Vtk_StatusToStringsDelete, memory leaks and other problems can
occur. For more information about the Toolkit memory model, see
“Toolkit Memory Model” on page 9.

See Also
“Vtk_StatusToStrings” on page 191

192

ValiCert Validator Toolkit

Functions

Vtk ValHdIDelete

);

#include <vtk valid.h>
#include <vtk_err.h>

void Vtk_ValHdIDelete(
Vtk_ValHdl *hdl [* input */

Description

This validation function releases memory previously allocated to this data
structure with the Vtk_ValidationAddCert or Vtk_ValAddCertRaw function.

Once this function completes successfully, the Vtk_ValHdl structure becomes

invalid.

Parameters

hdl

Return Value

none

Notes

Pointer to the auxiliary data structure for which
memory and resources are to be released

The function has completed successfully and the
validation query structure has been deleted.

The auxiliary data structure is used to link individual certificate
m validation requests to their detail. The entire structure is released.
The application must call this function for each validation handle

structure created. If the application does not call Vtk_ValHdIDelete,
memory leaks and other problems can occur. For more information
about the Toolkit memory model, see “Toolkit Memory Model” on

page 9.

ValiCert Validator Toolkit

193

Toolkit Reference

See Also

“Vtk_ValHdIGetRevStatus” on page 195
“Vtk_ValidationAddCert” on page 198
“Vtk_ValidationAddCertRaw” on page 200

194

ValiCert Validator Toolkit

Functions

Vtk ValHdIGetRevStatus

#include <vtk valid.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_ValHdIGetRevStatus(

const Vtk_Ctxt *ctxt, [* input */
const Vtk ValHdl *hdl, [* input */
Vtk_uint32 *status, [* output */

Vtk_ValRespDetails **respDetails,

[* input/output */
Vtk_ValRespSingleCertDetails **certDetails

/* input/output */
);

Description

This validation function retrieves validation status information for a single
certificate. The application can specify to return detailed revocation
information for the entire validation response or a single certificate. For
information about the detailed information see Vtk_ValRespDetails or
Vtk_ValRespSingleCertDetails.

This function is similar to the Vtk ValidationGetRevStatus function. However,
it is more optimized. Instead of checking the entire validation structure, this
function uses the validation handle that has been specified for the certificate
when the certificate was added to the validation query.

This function only applies to those certificates for which the application has
specified a validation handle using Vtk_ValidationAddCert or
Vtk_ValidationAddCertRaw functions.

Parameters
ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.
hdl Pointer to a auxiliary data structure used to link
individual certificate validation requests to their
detail.

ValiCert Validator Toolkit 195

Toolkit Reference

status Pointer to the status information for the certificate.
The status values are defined as a bit field.
Therefore, a single status value can represent
multiple status codes. For a list of the possible
certificate status codes, see Appendix A, "Error and
Status Codes."

respDetails Address to the pointer to the detailed revocation
information for the entire response. (It points to a
structure allocated by the Toolkit in this call.) This
function returns the requested information in the
structure. In cases where the result is not needed,
the application can pass in NULL. The application
must release this structure using the
Vtk_ValRespDetailsDelete function.

certDetails Address to the pointer to the detailed revocation
information for a single certificate response. (It points
to a structure allocated by the Toolkit in this call.)
This function returns the requested information in the
structure. In cases where the result is not needed,
the application can pass in NULL. The application
must release this structure using the
Vtk_ValRespSingleCertDetailsDelete function.

Return Value

VTK_OK The function has completed successfully and if
specified, returns the Vtk_ValRespDetails or
Vtk_ValRespSingleCertDetail structure.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

If the application specifies Vtk_RespDetails or
Vtk_ValRespSingleCertDetails, but the VA does not have any
information for the specified certificate, the function returns
successfully and sets the specified structure to NULL.

The application must release these structures using the
Vtk_ValRespDetailsDelete or Vtk_ValRespSingleCertDetailsDelete
function.

196

ValiCert Validator Toolkit

Functions

See Also

“Vtk_ValRespDetails” on page 107
“Vtk_ValRespSingleCertDetails” on page 109
“Vtk_ValRespDetailsDelete” on page 229
“Vtk_ValRespSingleCertDetailsDelete” on page 231

ValiCert Validator Toolkit 197

Toolkit Reference

Vtk_ValidationAddCert

#include <vtk valid.h>

#include <vtk_err.h>

Vtk_uint32 Vtk_ValidationAddCert(
const Vtk_Ctxt *ctxt, [* input */
Vtk_Validation *val, [* input/output */
const Vtk_Cert *cert, [* input */
const Vitk_Cert *issuerCert, /* input */
Vtk_ValHdl **hdl [* output */

);

Description

This validation function adds a single certificate to the validation query
(Vtk_Validation structure created using the Vtk ValidationNew function) that
will be sent to the VA or Global VA Service for validation. To add the certificate
to the validation query, the application must specify the end-user certificate
and its issuer certificate. If the application wants to later set protocol specific
extensions for this certificate validation or obtain validation status for this
certificate, the application can use the optional Vtk_ValHdI structure.

Parameters

ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

val Pointer to the validation query structure to which the
certificate is to be added.

cert Pointer to the certificate to add to the validation query
structure for validation.

issuerCert Pointer to issuer certificate for the certificate to be
validated.

hdl Pointer to a auxiliary data structure used to link

individual certificate validation requests to their
detail. This is an optional return value.

198 ValiCert Validator Toolkit

Functions

Return Value

VTK_OK The function has completed successfully and the
certificate has been added to the validation query.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

If the application allocates memory to the Vtk_ValHdI structure, it can
m set extensions, obtain validation status, and obtain details specific to
a certificate instead of as an aggregate value of all the certificates.
However, since memory is allocated to this auxiliary structure, the
application must call the Vtk_ValHdIDelete function to release it
when the structure is no longer needed.

Alternatively, the application can use the Vtk_ ValidationGetValHd|I
function to create the validation handle after the certificate is added.

See Also

“Vtk_ValHdIGetRevStatus” on page 195
“Vtk_ValidationAddCertRaw” on page 200
“Vtk_ValidationGetRevStatus” on page 212
“Vtk_ValidationGetValHdI" on page 217
“Vtk_ValidationGetValHdI" on page 217
“Vtk_ValidationValidate” on page 223

ValiCert Validator Toolkit 199

Toolkit Reference

Vtk ValidationAddCertRaw

#include <vtk valid.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_ValidationAddCertRaw(

const Vtk_Ctxt *ctxt, [* input */
Vtk_Validation *val, [* input/output */
const Vitk Buffer *cert, [* input */
const Vtk _Buffer *issuerCert, /* input */
Vtk_ValHdl **hdl [* output */

Description

This validation function adds a single certificate to the validation query
(Vtk_Validation structure created using the Vtk_ValidationNew function) that
will be sent to the VA or Global VA Service for validation. The certificate that is
to be added is created from the user supplied data contained in the buffer. To
add the certificate to the validation query, the application must specify the
end-user certificate and its issuer certificate. The certificates can be specified
in raw DER/BASEG64 format. If the application wants to later set protocol
specific extensions for the this certificate validation query or obtain validation
status for this certificate, the application must also use the optional
Vtk_ValHdI structure.

Parameters

ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

val Pointer to the validation query structure to which the
certificate is to be added.

cert Pointer to the certificate to add to the validation query
structure for validation.

issuerCert Pointer to issuer certificate for the certificate to be
validated.

hdl Pointer to a auxiliary data structure used to link

individual certificate validation requests to their
detail. This is an optional return value.

200

ValiCert Validator Toolkit

Functions

Return Value

VTK_OK The function has completed successfully and the
certificate has been added to the validation query.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

If the application specifies the Vtk_ValHdl structure, it can set

m extensions, obtain validation status, and obtain details specific to a
certificate instead of as an aggregate value of all the certificates.
However, since memory is allocated to this auxiliary structure, the
application must call the Vtk_ValHdIDelete function to release it
when the structure is no longer needed.

If the application does not use the optional Vtk_ValHdI structure, that
is, it passes NULL as the parameter when adding the certificate, the
application can use the Vtk_ValidationGetValHdI function to create
the validation handle after the certificate is added.

See Also

“Vtk_ValHdIGetRevStatus” on page 195
“Vtk_ValidationAddCert” on page 198
“Vtk_ValidationGetRevStatus” on page 212
“Vtk_ValidationGetValHdI" on page 217
“Vtk_ValidationValidate” on page 223

ValiCert Validator Toolkit 201

Toolkit Reference

Vtk ValidationAddCertChain

#include <vtk valid.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_ValidationAddCertChain(

const Vtk_Ctxt *ctxt, [* input */
Vtk_Validation *val, [* input/output */
const Vtk_Cert *cert, [* input */
VTK_CHAINBUILD_CALLBACK callback, /* input */
void *userHdl [* input */

Description

This validation function builds a certificate chain for the specified certificate
and adds all the certificates to the validation structure. The CA certificates
stored in the Vtk_Ctxt are used while constructing the chain. When an
application calls the Vtk_ValidationAddCertChain function, the application can
use the Vtk_ChainBuildCallback function to provide a function pointer that will
be called every time the Toolkit discovers a new link in the certificate chain.

Parameters

ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

val Validation query structure that contains certificates to
be validated.

cert Certificate for which the application wants to build a
chain.

callback Function pointer to the chain building callback
function. Use NULL when the callback function is not
needed.

userHdl Application specific data pointer. The Toolkit calls

this parameter. The Toolkit treats this pointer as
opaque data. It will be passed to user specified
callback function.

202 ValiCert Validator Toolkit

Functions

Return Value

VTK_OK The function has completed successfully and the
certificate has been added to the validation query.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

The application can use the Vtk_ValidationGetValHdI function to
m create a validation handle after the certificate is added. The
application can then use the validation handle to identify a specific
certificate in the certificate chain.

See Also
“Vtk_ChainBuildCallBack” on page 113
“Vtk_ValidationGetValHd!" on page 217

ValiCert Validator Toolkit 203

Toolkit Reference

Vtk_ValidationAddRegExt

#include <vtk valid.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_ValidationAddRegExt(

const Vtk_Ctxt *ctxt, [* input */
Vtk_Validation *val, [* input/output */
const Vtk_Extension *ext [* input */

Description

This validation function adds an extension to an entire OCSP or CRT
validation request. A validation request can be for one or more certificates. An
extension added using this function applies to all the certificates in the
request. An application can call Vtk_ExtensionNew to create an extension
and can call Vtk_Extensionlnit to initialize the data. The data by can be any
data that the application wants to add to a validation request.

An extension added with this function can have a VA server extension
counterpart that provides Stateful Validation using the VA API described in the
ValiCert Enterprise VA Installation and Administration Guide.

Parameters
ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.
val Pointer to the validation query structure that contains
certificates to be validated.
ext Pointer to the extension to be added to the request.

204 ValiCert Validator Toolkit

Functions

Return Value

VTK_OK The function has completed successfully and the
extension has been added to the validation query.

error code The function has failed. For information about

possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

An application can add extensions to the entire request as well as
m individual certificates in the validation request.

See Also

“Vtk_ValidationAddReqExtForSingleCert” on page 206
“Vtk_ValidationAddReqExtForSingleCertHdI” on page 208

ValiCert Validator Toolkit 205

Toolkit Reference

Vtk_ValidationAddRegExtForSingleCert

#include <vtk valid.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_ValidationAddRegExtForSingleCert(

const Vtk_Ctxt *ctxt, [* input */
Vtk_Validation *val, [* input/output */
const Vtk_Cert *cert, [* input */

const Vitk_Cert *issuerCert, /* input */
const Vtk_Extension *ext, [* input */

Description

This validation function adds an extension to a specific certificate in a
validation request. The certificate and issuer certificate information passed in
this function are used to identify the certificate to which the application wants

an extension added.

Compare this function with the Vtk ValidationAddReqgExtForSingleCert
function which identifies the certificate using its Vtk_ValHdI.

Parameters

ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

val Pointer to the validation query structure that contains
certificates to be validated.

cert Pointer to the certificate in the validation query
structure to add the extension.

issuerCert Pointer to issuer certificate of the certificate to which
an extension is to be added. This value can be NULL
if the issuer certificate was added into the Vtk_Cixt.

ext Pointer to the extension to add to the specific

certificate.

206

ValiCert Validator Toolkit

Functions

Return Value

VTK_OK The function has completed successfully and the
extension has been added to the certificate in the
validation query.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

An application can add extensions to the entire request as well as
m individual certificates in the validation request.

See Also
“Vtk_ValidationAddRegExt” on page 204
“Vtk_ValidationAddReqExtForSingleCertHdI” on page 208

ValiCert Validator Toolkit 207

Toolkit Reference

Vtk_ValidationAddRegExtForSingleCertHdl

#include <vtk valid.h>
#include <vtk_err.h>

Vtk_uint32

Vtk_ValidationAddRegExtForSingleCertHdI(
const Vitk_Citxt *ctxt, [* input */
const Vtk ValHdl *hdl, [* input */

const Vtk_Extension *ext, /* input */

Description

This validation function adds an extension to a specific certificate in a
validation request. The Vtk_ValHdl passed in this function is used to identify
the certificate to which the application wants an extension added. If the
application wants to identify the certificate by means of its validation handle
using this function, the application must first obtain the Vtk_ValHdl structure
by calling the Vtk_AddCert, Vtk_AddCertRaw, or Vtk ValidationGetValHdI
function.

Compare this function with the Vtk ValidationAddReqgExtForSingleCert
function which allows an application to identify a specific certificate using the
certificate/issuer pair.

Parameters
ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.
hdl Pointer to the certificate in the validation query
structure to add the extension.
ext Pointer to the extension to add to the specific

certificate.

208

ValiCert Validator Toolkit

Functions

Return Value

VTK_OK The function has completed successfully and the
extension has been added to the certificate in the
validation query.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

An application can add extensions to the entire request as well as
m individual certificates in the validation request.

See Also

“Vtk_ValidationAddCert” on page 198
“Vtk_ValidationAddCertRaw” on page 200
“Vtk_ValidationAddRegExt” on page 204
“Vtk_ValidationAddReqExtForSingleCertHdI” on page 208
“Vtk_ValidationGetValHdI" on page 217

ValiCert Validator Toolkit 209

Toolkit Reference

Vtk ValidationDelete

);

#include <vtk valid.h>
#include <vtk_err.h>

void Vtk_ ValidationDelete(
Vtk_Validation *val [* input */

Description

This validation function releases memory and resources previously allocated
to the validation query structure with the Vtk_ValidationNew function. Once
this function completes successfully, the Vtk_Validation structure becomes

invalid.

Parameters

val

Return Value

none

Notes

Pointer to the Vtk_Validation query structure for
which memory and resources are to be released.

The function has completed successfully and the
validation query structure has been deleted.

The entire structure and all validation queries contained within are
released. The application must call this function for each validation
query structure created using Vtk_ValidationNew. If the application
does not call Vtk_ValidationDelete, memory leaks and other
problems can occur. For more information about the Toolkit memory
model, see “Toolkit Memory Model” on page 9.

210

ValiCert Validator Toolkit

Functions

See Also
“Vtk_ValidationGetValHdI" on page 217

ValiCert Validator Toolkit 211

Toolkit Reference

Vtk ValidationGetRevStatus

#include <vtk valid.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_ValidationGetRevStatus(

const Vtk_Ctxt *ctxt, [* input */
const Vtk Validation *val, /* input */
const Vtk_Cert *cert, [* input */
const Vitk_Cert *issuerCert, [* input */
Vtk_uint32 *status, /* output */

Vtk_ValRespDetails **respDetails,

/* input/output */
Vtk_ValRespSingleCertDetails **certDetails

[* input/output */

Description

This validation function retrieves validation status information for a single
certificate. The application can request detailed revocation information for the
entire validation response or a single certificate. For information about the
detailed information, see Vtk_ValRespDetails or
Vtk_ValRespSingleCertDetalils.

Parameters

ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

val Pointer to the validation data structure that
encapsulates a set of validation queries that
can be sent to one or more VAs. The validation
query structure is opaque to your application.

cert Pointer to the certificate for which status information
is being requested.

issuerCert Pointer to the issuer certificate.

212 ValiCert Validator Toolkit

Functions

status Pointer to the status information for the certificate.
The status values are defined as a bit field.
Therefore, a single status value can represent
multiple status codes. For a list of the possible
certificate status codes, see Appendix A, "Error and
Status Codes."

respDetails Address to the pointer to the detailed revocation
information for the entire response. (It points to a
structure allocated by the Toolkit in this call.) This
function returns the requested information in the
structure. In cases where the result is not needed,
the application can pass in NULL. The application
must release this structure using the
Vtk_ValRespDetailsDelete function.

certDetails Address to the pointer to the detailed revocation
information for a single certificate response. (It points
to a structure allocated by the Toolkit in this call.)
This function returns the requested information in the
structure. In cases where the result is not needed,
the application can pass in NULL. The application
must release this structure using the
Vtk_ValRespSingleCertDetailsDelete function.

Return Value

VTK_OK The function has completed successfully and if
specified, returns the Vtk_ValRespDetails or
Vtk_ValRespSingleCertDetail structure.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

This function is similar to the Vtk_ValHdIGetRevStatus function which
m allows the application to return this type of information directly for a
certificate added to the validation query with a validation handle.

If the application requests detailed revocation information (either
respDetails or certDetails) but this information is not available in the
response, the function returns VTK_OK, but the return values in the
structure are not set.

ValiCert Validator Toolkit 213

Toolkit Reference

See Also

“Vtk_ValRespDetails” on page 107
“Vtk_ValRespSingleCertDetails” on page 109
“Vtk_ValRespDetailsDelete” on page 229
“Vtk_ValRespSingleCertDetailsDelete” on page 231

214 ValiCert Validator Toolkit

Functions

Vtk ValidationGetQueries

#include <vtk valid.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_ValidationGetQueries(

const Vtk_Ctxt *ctxt, [* input */
const Vtk Validation *val, /* input */
int *valQueryCount, [* input */

Vtk_ValQuery ***queriesOut /* input/output */

Description

This validation query function obtains an array of validation query messages
contained in the Vtk_Validation data structure. After obtaining the query
messages, the application instead of the Toolkit is responsible for
communication with each VA returned in the queries.

The application sets the response it obtains from the VA in the response field
of the Vtk_ValQuery structure. To complete the validation of these queries the
application calls the Vtk_ValidationValidateFromQueries function to check the
information in the responses. It must then release the memory occupied by
the response buffers.

An application might want to handle the communication with the VA and
complete validation with the Vtk_ ValidationFromQueries for any of the
following reasons:

% user wants to use SSL for the communication with the VA
< user wants asynchronous I/O with the VA
% user has their own source of validation responses or CRLs

ValiCert Validator Toolkit 215

Toolkit Reference

Parameters

ctxt

val

valQueryCount

queriesOut

Return Value

VTK_OK

error code

Notes

Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Pointer to the data structure that encapsulates a
set of validation queries that can be sent to one
or more VAs.

Number of query messages that are in the
Vtk_ValQuery array.

Pointer to the array of validation queries that the
application sends to the VA for validation.

The function has completed successfully and the
validation queries have been added to the array.

The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

The application must delete the returned array using the
m Vtk_ValQueriesDelete function. The application is also responsible
for releasing the memory allocated to Vtk_Buffer in the response,

which is not released by the Vitk_ValQueriesDelete function.

See Also

“Vtk_Validation” on page 106

“Vtk_ValQuery” on page 111

“Vtk_ValidationValidateFromQueries” on page 225

“Vtk_ValQueriesDelete” on page 227

216

ValiCert Validator Toolkit

Functions

Vtk ValidationGetValHdI

#include <vtk valid.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_ValidationGetValHdI(

const Vtk_Ctxt *ctxt, [* input */
const Vtk Validation *val, [* input */
const Vtk_Cert *cert, /* input */
const Vitk _Cert *issuerCert, [* input */
Vtk_ValHdl **hdl [* output */

Description

This validation function creates a validation handle for a specific certificate
within a validation query. This function is useful if the application added
certificates to the query using the Vtk_ValidationAddCertChain function or did
not specify the Vtk_ValHdl when it added the certificate using the
Vtk_ValidationAddCert or Vtk ValidationAddCertRaw function.

Once the application obtains the Vtk_ValHdI, it can use it to obtain detailed
revocation information or specify certificate extensions in the validation

request.

Parameters

ctxt

val

cert

issuerCert
hdl

Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Pointer to the validation data structure that
encapsulates a set of validation queries that can be
sent to one or more VAs. The validation query
structure is opaque to the your application.

Pointer to the certificate for which a validation handle
is being requested.

Pointer to the issuer certificate.

Pointer to a auxiliary data structure used to link
individual certificate validation requests to their
detail.

ValiCert Validator Toolkit

217

Toolkit Reference

Return Value

VTK_OK

error code

Notes

The function has completed successfully and if
specified, returns the Vtk_ValHdl structure.

The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

The application can use the Vtk_ValidationGetValHdI function to
create a validation handle after the certificate is added. The
application added through the Vtk ValidationAddCertChain function.

If the application creates a Vtk_ValHdI structure, it can set
extensions, obtain validation status, and obtain details specific to a
certificate instead of as an aggregate value of all the certificates.
However, since memory is allocated to this auxiliary structure, the
application must call the Vtk_ValHdIDelete function to release it
when the structure is no longer needed.

See Also

“Vtk_ValHdIDelete” on page 193

“Vtk_ValidationAddCert” on page 198
“Vtk_ValidationAddCertRaw” on page 200
“Vtk_ValidationAddCertChain” on page 202
“Vtk_ValidationAddReqExtForSingleCertHdI” on page 208

218

ValiCert Validator Toolkit

Functions

Vtk_ValidationNew

#include <vtk valid.h>
#include <vtk_err.h>

Vtk_Validation* Vtk_ValidationNew(
const Vitk_Ctxt *ctxt [* input */

);

Description

This validation function initializes and allocates memory for a validation query.
This structure can encapsulate one or more validation queries.

Once the validation query structure has been initialized, the application can
add certificates to be validated using the Vtk ValidationAddCert or
Vtk_ValidationAddCertRaw function.

Parameters

ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Return Value

Vtk_Validation The function has completed successfully. The
function returns the Vtk_Validation structure that has
been newly created and initialized.

NULL The function has failed.

Notes

This function creates an empty Vtk_Validation structure. When the
m application no longer needs this structure it must call the
Vtk_ValidationDelete function to release memory and resources
allocated to this structure.

ValiCert Validator Toolkit 219

Toolkit Reference

See Also

“Vtk_ValidationAddCert” on page 198
“Vtk_ValidationAddCertRaw” on page 200
“Vtk_ValidationDelete” on page 210
“Vtk_ValidationValidate” on page 223

220

ValiCert Validator Toolkit

Functions

Vtk_ValidationSetValnfo

#include <vtk valid.h>
#include <vtk_defs.h>

Vtk_uint32 Vtk_ValidationSetValnfo(

const Vtk_Ctxt *ctxt, [* input */
Vtk_Validation *val, [* input */
const char *vaUrl, [* input */

enum Vtk_ValidationMech mech, /* input */
const Vtk_CertStore *vaCerts /* input */

Description

This validation function sets specific protocol and VA information for this
validation operation for the certificates in the Vtk_Ctxt or Vtk_CertStore (if

specified).

The information set in this function overrides the protocol and VA information
currently set for the Vtk_Ctxt resulting in this Vtk_Validation structure being
specific to the specified VA.

Parameters

ctxt

val

vauUrl

mech

Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.

Pointer to the Vtk_Validation query structure.

URL for the VA, for example
http://ocsp.valicert.net:80.

Validation mechanism type employed by the user.
The possible values are:

% VTK_VM_CRT

% VTK_VM_OCSP

For more information about these values, see
“Vtk_ValidationMech” on page 80.

ValiCert Validator Toolkit

221

Toolkit Reference

vaCerts Pointer to the certificate store that contains the
VA certificates that are to be used to validate
responses from the VA, This parameteris
optional. If it is not set, the settings are applied
to the certificates specified in the context. See
“Vtk_CertStore” on page 90.

Return Value

VTK_OK The function has completed successfully and the VA
information and protocol have been set.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

Notes

This function copies the Vtk_CertStore structure. Therefore,
applications must call the Vtk_CertStoreDelete to release the
memory and resources allocated to the Vtk_CertStore structure.

See Also
“Vtk_CertStore” on page 90
“Vtk_CertStoreDelete” on page 145

222

ValiCert Validator Toolkit

Functions

Vtk ValidationValidate

#include <vtk valid.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_ValidationValidate(
const Vtk_Ctxt *ctxt, [* input */
Vtk_Validation *val, [* input */
Vtk_uint32 *valStatus [* output */
);

Description

This validation function sends the validation request(s) to the VA to perform
the validation. Calling this function can result in one or more validation queries

being sent to one or several VAs.

Parameters
ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.
val Validation query structure that contains certificates to
be validated.
valStatus Aggregate validation status of all the certificates in

the validation query structure. The function must
return VTK_OK for the status field to be valid. All the
certificates must pass validation for the validation
status to be VTK_STATUS_OK.

Return Value

VTK_OK The function has completed successfully and the
validation has completed.

error code The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

ValiCert Validator Toolkit

223

Toolkit Reference

Notes

Since the validation status is an aggregate value, one revoked
m certificate causes the value of the returned status to be revoked.

The application can obtain validation status for an individual
certificate by including a Vtk_ValHdl auxiliary data structure when the
certificate is added to the list of certificates to be validated. A
certificate is added using the Vtk_ValidationAddCert and
Vtk_ValidationAddCertRaw functions. Retrieving the validation status
for the individual certificate can be done using the
Vtk_ValHdIGetRevStatus or Vtk_ValidationGetRevStatus function.

See Also

“Vtk_ValHdIGetRevStatus” on page 195
“Vtk_ValidationAddCert” on page 198
“Vtk_ValidationAddCertRaw” on page 200
“Vtk_ValidationGetValHdI" on page 217

224 ValiCert Validator Toolkit

Functions

Vtk ValidationValidateFromQueries

#include <vtk valid.h>
#include <vtk_err.h>

Vtk_uint32 Vtk_ValidationValidateFromQueries(

const Vtk_Ctxt *ctxt, [* input */
Vtk_Validation *val, [* input */
Vtk_ValQuery **valQueries, /* input/output */
Vtk_uint32 *valStatus [* output */

Description

This validation query function validates the validation tokens or responses
supplied by the application.

This function is called only after the application has called the
Vtk_ValidationGetQueries function to obtain an array of validation query
messages contained in the Vtk_Validation data structure, communicates with
the VA, and places the information it obtains from the VA in the response field
of each query.

Unlike the Vtk_Validation function, this function does not handle the
communication with the VA and does not set the response in the query

structure.
Parameters
ctxt Pointer to Toolkit context created using the
Vtk_CtxtNew function and for which memory has
been allocated.
val Validation query structure that contains certificates to
be validated.
valQueries Pointer to the array of validation queries that the
application wants to have validated by the VA.
valStatus Aggregate validation status of all the certificates in

the validation query structure. The function must
return VTK_OK for the status field to be valid.

ValiCert Validator Toolkit 225

Toolkit Reference

Return Value

VTK_OK

error code

Notes

The function has completed successfully and
validation has completed.

The function has failed. For information about
possible error values, refer to Appendix A, "Error and
Status Codes."

The Vtk_ValQuery array is created using the
Vtk_ValidationGetQueries function. Since the validation status is an
aggregate value, one revoked certificate causes the value of the
returned status to be revoked.

See Also

“Vtk_Validation” on page 106

“Vtk_ValQuery” on page 111

“Vtk_ValidationGetQueries” on page 215

“Vtk_ValQueriesDelete” on page 227

226

ValiCert Validator Toolkit

Functions

Vtk ValQueriesDelete

#include <vtk valid.h>
#include <vtk_err.h>

void Vtk_ValQueriesDelete(
Vtk_ValQuery **queriesToDelete

);

Description

This validation query function releases memory and resources occupied by
the Vtk_ValQuery array allocated by the Vtk_ValidationGetQueries function.
However, the response data in each Vtk_ValQuery is not released and
remains the responsibility of the application. Once this function completes
successfully, the Vtk_ValQuery structure becomes invalid.

Parameters

queriesToDelete Pointer to the Vtk_ValQuery structure for which
memory and resources are to be released.

Return Value

none The function has completed successfully and the
validation query array has been deleted.

Notes

The application must call this function for each Vtk_ValQuery array
m created using Vtk ValidationGetQueries. If the application does not
call Vtk_ValQueriesDelete, memory leaks and other problems can
occur. For more information about the Toolkit memory model, see
“Toolkit Memory Model” on page 9.

ValiCert Validator Toolkit 227

Toolkit Reference

See Also

“Vtk_ValQuery” on page 111
“Vtk_ValidationGetQueries” on page 215
“Vtk_ValidationValidateFromQueries” on page 225

228 ValiCert Validator Toolkit

Functions

Vtk_ValRespDetailsDelete

#include <vtk valid.h>
#include <vtk_err.h>

void Vtk_ValRespDetailsDelete(
Vtk_ValRespDetails *details [* input */

);

Description

This validation function releases memory and resources previously allocated
by the Vtk_ValHdIGetRevStatus or Vtk_ValidationGetRevStatus function.
Once this function completes successfully, the Vtk_ValRespDetails structure
becomes invalid.

Parameters

details Pointer to the Vtk_ValRespDetails structure for which
memory and resources are to be released.

Return Value

none The function has completed successfully and the
validation context has been deleted.

Notes

The application must call this function for each detailed response
m created using Vtk_ValHdIGetRevStatus or
Vtk_ValidationGetRevStatus. If the application does not call
Vtk_ValRespDetailsDelete, memory leaks and other problems can
occur. For more information about the Toolkit memory model, see
“Toolkit Memory Model” on page 9.

ValiCert Validator Toolkit 229

Toolkit Reference

See Also
“Vtk_ValHdIGetRevStatus” on page 195
“Vtk_ValidationGetRevStatus” on page 212

230 ValiCert Validator Toolkit

Functions

Vtk_ValRespSingleCertDetailsDelete

#include <vtk valid.h>
#include <vtk_err.h>

void Vtk_ValRespSingleCertDetailsDelete(
Vtk_ValRespSingleCertDetails* details

[* input */

Description

This validation function releases memory and resources previously allocated

by the Vtk_ValHdIGetRevStatus or Vtk_ValidationGetRevStatus function.

Once this function completes successfully, the Vtk_ValRespSingleCertDetails
structure becomes invalid.

Parameters

details

Return Value

none

Notes

Pointer to the Vtk_ValRespSIngleCertDetails
structure for which memory and resources are to be
released

The function has completed successfully and the
validation context has been deleted.

The application must call this function for each detailed response
m created using Vtk ValHdIGetRevStatus or
Vtk ValidationGetRevStatus. If the application does not call

Vtk_ValRespSingleCertDetailsDelete, memory leaks and other
problems can occur. For more information about the Toolkit memory
model, see “Toolkit Memory Model” on page 9.

ValiCert Validator Toolkit

231

Toolkit Reference

See Also
“Vtk_ValHdIGetRevStatus” on page 195
“Vtk_ValidationGetRevStatus” on page 212

232 ValiCert Validator Toolkit

Functions

Vtk_WriteLog

include <vtk_error.h>
include <vtk_defs.h>

void Vtk_WriteLog(

const Vitk_Ctxt *pCtxt, [* input */
enum Vtk_CtxtLogType type, /* input */
const char *pMsg [* input */

Description

This function writes a message into the log file or invokes any specified
application specific WriteLog callback function.

An application can use this function to put extra information into the log file
that was opened by the Vtk_OpenLog function. The default Toolkit
implementation is to write a message to the log file in the following format:

LogType: Timestamp MessageDescription

For example:

I: [28/Feb/2000 10:58:33.172 -0800] Vtk_CertLoadFromFile:
Loading certificate from \test\test_cert.cer

D: [28/Feb/2000 10:58:33.413 -0800] Crtlnit: Operation completed
successfully

I: [28/Feb/2000 10:58:33.413 -0800] CrtValidate CRT Request sent
to ci.valicert.net (port 80)

E: [28/Feb/2000 13:36:44.740 -0800] CrtValidate: Unable to
validate the response from the VA Source
File:D:\src\cryptosoft\libs\vctoolkit\vtk_qcrt.c (374)

ValiCert Validator Toolkit 233

Toolkit Reference

Parameters
pCitxt A pointer to the Toolkit context.
type The type of log message (see the enumerated type
Vtk_CtxtLogType for details).
pMsg The log message.

Return Value

None

Notes

To provide an alternate log writing function define
m Vtk_OpenLogCallback, Vtk_CloseLogCallback, and
Vtk_WriteLogCallback.

See Also

“Data Structures” on page 81
“Vtk_WriteLogCallback” on page 123
“Vtk_CtxtSetOption” on page 166
“Vtk_LogOptions” on page 99
“Vtk_OpenLog” on page 189

234 ValiCert Validator Toolkit

APPENDIX

A

Error and Status
Codes

This section contains the define statements in the error.h header file. It
defines the following two categories:

< Error Codes
< Status Codes

The application can translate these error codes and status codes into strings
that are specific to their needs using the Vtk_ErrorToString and
Vtk_StatusToStrings functions provided in the Toolkit.

Error Codes

These are the return codes for the functions.
#define VTK_OK

#define VTK_ERR_BAD_LEAF_COUNT

#define VTK_ERR_UNSUPPORTED_DATA_TYPE
#define VTK_ERR_BAD_SIGNATURE

#define VTK_ERR_OUT_OF_MEMORY

#define VTK_ERR_BAD_FILE

#define VTK_ERR_INDEX_OUT_OF_BOUNDS
#define VTK_ERR_INTERNAL

#define VTK_ERR_BAD_ASN1

#define VTK_ERR_BAD_LEAF_POSITION
#define VTK_ERR_UNABLE_TO_GET

#define VTK_ERR_INCOMPATIBLE_VERSION 11

© 0O N o o0 b~ W N B+ O

[N
o

ValiCert Validator Toolkit 235

Error and Status Codes

#define VTK_ERR_BAD_NONCE 12
#define VTK_ERR_BAD_CRL 13
#define VTK_ERR_NO_TRUSTED_CA 14
#define VTK_ERR_WRONG_CRL 15
#define VTK_ERR_BAD_PARMS 16
#define VTK_ERR_OP_NOT_SUPPORTED 17
#define VTK_ERR_NO_CERTS_TO_VALIDATE 18
#define VTK_ERR_BAD_URL 19
#define VTK_ERR_NO_DATA 20
#define VTK_ERR_NO_VALHDL_INFO 21
#define VTK_ERR_BAD_VALHDL 22
#define VTK_ERR_UNKNOWN_VA 23
#define VTK_ERR_LDAP_SIZE_LIMIT_EXCEEDED 24
#define VTK_ERR_LDAP_SEARCH 25
#define VTK_ERR_CRL_FORMAT 26
#define VTK_ERR_CONNECT 27
#define VTK_ERR_ERR_SEND_REQ 28
#define VTK_ERR_SOCK_READ 29
#define VTK_ERR_NULL_RESPONSE 30
#define VTK_ERR_BAD_RESPONSE 31
#define VTK_ERR_BAD_MIME_HDR 32
#define VTK_ERR_VA_REFUSED 33
#define VTK_ERR_INIT_COMM 34
#define VTK_ERR_CERTS_DO_NOT_MATCH 35
#define VTK_ERR_VA_NO_CER_INFO 36
#define VTK_ERR_CERT_PATH_TOO_DEEP 37
#define VTK_ERR_NO_ISSUER_CERT 38

236

ValiCert Validator Toolkit

Status Codes

#define VTK_ERR_URL_TO_LONG 39
#define VTK_ERR_DECODING_PKCS7 40
#define VTK_ERR_CTXT_OPTION_NOT_SET 41
#define VTK_ERR_UNABLE_TO_LOAD_LDAP_LIB 42
#define VTK_ERR_UNABLE_TO_LOAD_LDAP_FUNCS 43
#define VTK_ERR_LDAP_AUTH 44
#define VTK_ERR_LDAP_NOT_FOUND 45
#define VTK_ERR_USER_CALLBACK 46
#define VTK_ERR_NOT_FUND 47
#define VTK_ERR_SRV_MALFORMED_REQUEST 48
#define VTK_ERR_SRV_INTERNAL_ERROR 49
#define VTK_ERR_SRV_TRY_LATER 50
#define VTK_ERR_SRV_SIG_REQUIRED 51
#define VTK_ERR_SRV_UNAUTHORIZED 52
#define VTK_ERR_OPEN_LOG_FILE 53
#define VTK_ERR_LOG_ALREADY_OPEN 54
#define VTK_ERR_CRYPTO_LIB_INIT 55

Status Codes

The status values are defined as bit field. This means a single status value
can represent multiple status codes.

#define VTK_STATUS_OK ox1
#define VTK_STATUS_UNKNOWN 0x2
#define VTK_STATUS_REVOKED ox4
#define VTK_STATUS_CRL_EXPIRED 0x8
#define VTK_STATUS_CRL_NOT_YET_VALID 0x10

ValiCert Validator Toolkit 237

Error and Status Codes

#define VTK_STATUS_RESP_EXPIRED 0x20
#define VTK_STATUS_RESP_NOT_YET_VALID 0x40

238 ValiCert Validator Toolkit

Index

Symbols

“hot list” data 1

A

AlA certificate extension 73
architecture 3

Authority Information Access (AlIA)

73
C
cache
CRL directory 73
no nextUpdate CRLs 74
callbacks
delegated issuer 74
Certificate Revocation Lists
see CRLs
Certificate Revocation Trees
see CRTs
client information extension 72
communicating with the VA 2
constants 68
conventions, typographical x
credits, other products used xi
CRL
caching directory 73
data type 77
CRLs
cache duration 74
URL for RFC 4
validation mechanism 4
CRT Client
for validation request 72
CRTs
validation mechanism 5

crypto libraries 2
D
data format 76
data passed
format of 76
type of 77
data structures 81-99
delegated issuer callback
option for 74
E

encoding methods 1
enumerations 69—-80
G
Global VA Service
URL constant 68
H
HTTP Proxy 73
K
key point, explanation of x
L
LDAP server
response time 74
logging
code sample alternate function-
ality 43
code sample default functionality
42
logging messages
types 69
N
Netscape Communications Xi
Netscape LDAP SDK, force loading

ValiCert Validator Toolkit

239

Index

73
nonce extension 72
note, explanation of x
@)
OCSsP
rerouting request 72
signing information 74
URL for RFC 4
validation mechanism 4
OCSP Client
for validation request 72
Online Certificate Status Protocol
see OCSP
P
PKCS7
data type 77
product architecture 3
R
reference, explanation of x
replay attacks, preventing 72
responder
choosing the closest 72
RFC 2459, CRLs 4
RFC 2560, OCSP 4
S

service locator request extension 72

SSL, communicating with VA 23
SSleay software xi

symbol, Global VA Service URL 68

symbols x
T
time skew 73
typographical conventions x
U
URL

Global VA Service, for 68
UserAgent

for validation request 72
\Y
VA, communicating using SSL 23
VA, communicating with 2
ValiCert Relocation protocol 72
validation mechanisms 1, 3

Vtk_CtxtOptionType enumeration 69

Vtk _DataFormat enumeration 76
VTK_DataType enumeration 77
Vtk_DataType enumeration 77
VTK_DF_BASE64 data format 76
VTK_DF_DER data format 76
VTK_DF_HEX data format 76
VTK_DF_STRING data format 76
VTK_DT_CRL data 77
VTK_DT_PKCS7 data 77
Vtk_GVAS_URL constant 68

Vtk_RevocationReason enumera-

tion 78
VtkCrlCacheDir 73
w

warning, explanation of x

240

ValiCert Validator Toolkit

	Introduction
	Product Architecture
	Supported Validation Mechanisms
	Certificate Revocation Lists (CRLs)
	Online Certificate Status Protocol (OCSP)
	Certificate Revocation Trees™ (CRTs)

	System Requirements
	Other Considerations

	Using the Toolkit
	X.509 Certificate Format
	Toolkit Memory Model
	Integrating Crypto Libraries
	Implementing Basic Validation in an Application
	Sample Basic Application

	Extending Validation in Your Application
	Creating Context for Local VA
	Code Sample for Creating Context for Local VA

	Communicating with a VA
	Code Sample for Communicating with VA

	Customizing VA information
	Code Sample for Customizing VA Information

	Getting Detailed Revocation Information
	Code Sample for Obtaining Revocation Information

	Building and Validating Certificate Chains
	Code Sample for Building and Validating Certificate Chain

	Getting Extension Information
	Code Sample for Getting Extension Information

	Adding Logging
	Code Samples For Adding Logging

	Implementing Specialized Validation Processing
	Producing Signed Requests
	Code Sample for Customizing a Context
	Code Sample for Signing OCSP Requests

	Checking Delegated VA Certificates
	Code Sample for Checking Delegated Certificates

	Setting Proxy Information
	Code Sample for Setting Proxy Information

	Adding OCSP Extensions
	Code Sample for Adding OCSP Extensions

	Getting Validation Handle for Specific Certificate
	Code Sample for Getting Validation Handle

	Toolkit Reference
	Constants
	VTK_GVAS_URL

	Enumerations
	Vtk_CtxtLogType
	Vtk_CtxtOptionType
	Vtk_DataFormat
	Vtk_DataType
	Vtk_RevocationReason
	Vtk_ValidationMech

	Data Structures
	Vtk_Buffer
	Vtk_Byte
	Vtk_Callback
	Vtk_Cert
	Vtk_CertInfo
	Vtk_CertStore
	Vtk_CRLProtocolDetails
	Vtk_CRLRespDetails
	Vtk_CRTRespDetails
	Vtk_Ctxt
	Vtk_CtxtOptionType
	Vtk_Extension
	Vtk_Extensions
	Vtk_LogOptions
	Vtk_OCSPSignInfo
	Vtk_ProtocolDetails
	Vtk_ProxyInfo
	Vtk_ValHdl
	Vtk_Validation
	Vtk_ValRespDetails
	Vtk_ValRespSingleCertDetails
	Vtk_ValQuery

	Callback Functions
	Vtk_ChainBuildCallBack
	Vtk_CloseLogCallback
	Vtk_DelegatedIssuerCallBack
	Vtk_OCSPSignCallBack
	Vtk_OpenLogCallback
	Vtk_WriteLogCallback

	Functions
	Vtk_CertDelete
	Vtk_CertGetExtensions
	Vtk_CertGetInfo
	Vtk_CertGetIssuer
	Vtk_CertInfoDelete
	Vtk_CertInit
	Vtk_CertLoadFromFile
	Vtk_CertNew
	Vtk_CertStoreAddCert
	Vtk_CertStoreAddCertRaw
	Vtk_CertStoreDelete
	Vtk_CertStoreLoadFromFile
	Vtk_CertStoreNew
	Vtk_CloseLog
	Vtk_CRLValidateCert
	Vtk_CtxtAddCert
	Vtk_CtxtAddCerts
	Vtk_CtxtDelete
	Vtk_CtxtGetOption
	Vtk_CtxtNew
	Vtk_CtxtOptionDeleteContent
	Vtk_CtxtSetDefaultVa
	Vtk_CtxtSetOption
	Vtk_CtxtSetVaInfo
	Vtk_ErrorToString
	Vtk_ErrorToString_r
	Vtk_ExtensionDelete
	Vtk_ExtensionGetByOid
	Vtk_ExtensionInit
	Vtk_ExtensionNew
	Vtk_ExtensionsDelete
	Vtk_ExtensionsGetCount
	Vtk_ExtensionsGetith
	Vtk_Finish
	Vtk_Init
	Vtk_OpenLog
	Vtk_StatusToStrings
	Vtk_StatusStringsDelete
	Vtk_ValHdlDelete
	Vtk_ValHdlGetRevStatus
	Vtk_ValidationAddCert
	Vtk_ValidationAddCertRaw
	Vtk_ValidationAddCertChain
	Vtk_ValidationAddReqExt
	Vtk_ValidationAddReqExtForSingleCert
	Vtk_ValidationAddReqExtForSingleCertHdl
	Vtk_ValidationDelete
	Vtk_ValidationGetRevStatus
	Vtk_ValidationGetQueries
	Vtk_ValidationGetValHdl
	Vtk_ValidationNew
	Vtk_ValidationSetVaInfo
	Vtk_ValidationValidate
	Vtk_ValidationValidateFromQueries
	Vtk_ValQueriesDelete
	Vtk_ValRespDetailsDelete
	Vtk_ValRespSingleCertDetailsDelete
	Vtk_WriteLog

	Error and Status Codes
	Error Codes
	Status Codes

