
1 6/28/00Apple Confidential

Session 410

WebObjects:
Optimizing Applications

Alex Cone and Bill Bumgarner
Partners, CodeFab, Inc.

2 6/28/00Apple Confidential

Introduction

• Developing a scalable, high throughput site
requires special planning, careful execution and
lots of analysis and tuning. Learn how to build
WebObjects apps that can take the punishment
and come back for more!

3 6/28/00Apple Confidential

What You’ll Learn

• Techniques to write leaner and faster
WebObjects applications

• How to optimize your applications
before you write them

• How to overhaul an existing application

4 6/28/00Apple Confidential

What Goes Wrong?

• Bound by CPU
(app server is running at CPU=100%)

• Bound by memory
(app server is swapping too much)

5 6/28/00Apple Confidential

What Goes Wrong? (Cont.)

• Bound by network
(network connection is saturated)

• Bound by implementation
(responses require too much processing time)

• Bound by database
(DB server CPU=100%, too many calls/response)

6 6/28/00Apple Confidential

How Can We Fix It?

• First three by spending $$
CPU bound? Buy more boxes or CPUs!
Memory bound? Buy more RAM!
Network bound? Buy bigger pipe (add bursting)!

• Last two require optimization
Do less work to generate a response
Make more efficient use of database

7 6/28/00Apple Confidential

Good Rules to Code By

• Make it work, make it right, make it fast
• Don’t optimize without analysis
• Optimize in small steps and test results

after each step
• If it ain’t broke don’t fix it!

8 6/28/00Apple Confidential

Design Optimization

• Understand usage patterns
– Optimize most used areas first
– Make entry page fast!

• Plan business logic around response generation
– Avoid repeating “expensive” calculations
– Retain and reuse data–and know when it

is out of date
– Manage cached data carefully

9 6/28/00Apple Confidential

Design Optimization (Cont.)

• Minimize memory footprint (smaller
application == more instances running)
– Share data across sessions
– Clean up thoroughly (do not rely on GC!)
– Clear transient ivars when no longer needed
– Use stateless components
– Use shared sessions if appropriate
– Set the right session timeout value

10 6/28/00Apple Confidential

• Plan data access—queries, caching,
and cache updating
– Understand data latency issues
– Try for 0 queries per response
– Use in-memory searches where possible
– Manage faulting–plan relationship population
– Manage caching–explicitly update stale data
– Use shared editing context for reference data

Design Optimization (Cont.)

11 6/28/00Apple Confidential

• Use time outside request-response loop
for housekeeping
– Load reference data at app startup

 (register for applicationWillFinishLaunching)
– Use timers or performAfterDelay

to do database access between requests
– Serialize and lock request handling while

performing housekeeping tasks to avoid
threading/reentrancy issues

Design Optimization (Cont.)

12 6/28/00Apple Confidential

Design Optimization (Cont.)

• Partition functionality into multiple applications
– Separate data maintenance from presentation
– Move expensive operations from live site to data

entry application
– Use optimized object models for each application
– Complex object model for data entry app
– Simplified model for live site query/display
– Maximize reuse through frameworks

13 6/28/00Apple Confidential

• Minimize use of frames in UI
• Use Direct Actions
• Beware of mixing Java and Obj-C

– Crossing language bridge is expensive
– Use all Java, Java+WebScript, or Obj-C+WebScript

Design Optimization (Cont.)

14 6/28/00Apple Confidential

Improving Performance

• OK, the app is done, but it is…
– Too slow
– Using too much memory
– Using too many CPU cycles
– Occasionally very slow

• Now what?

15 6/28/00Apple Confidential

Don’t Be Silly!

• Make sure WOCachingEnabled is on
• Make sure WODebugging is off

(and use debugWithFormat!)
• Have action methods that stay on the

same page return self.context.page

16 6/28/00Apple Confidential

Start With the Most
Frequently Used Bits

• Know the actual usage patterns
– Log user activity
– Use WOStatisticsStore logging
– Capture DirectAction activity

• Tune most visited areas first

17 6/28/00Apple Confidential

Optimize DB Usage

• Change app functionality to avoid
pathological behavior
– Prevent unrestricted user searches

by requiring at least one qualifier
– Use fetch limits—nobody really wants

to scroll through 100s of rows!
– Cache search results
– Use in-memory searches whenever

possible (leverage the cache!)

18 6/28/00Apple Confidential

Optimize DB Usage (Cont.)

• Optimize fetching
– Use shared editing context for reference

data that will not be edited
– Use session editing contexts only for data

that will be edited by session user

19 6/28/00Apple Confidential

Optimize DB Usage (Cont.)

• Optimize fetching
– Use inter-app messaging to update

caches to avoid stale cached data
– Use time between requests for reference

data updates
– Use raw rows and custom queries to get

non-object-based data from the database

20 6/28/00Apple Confidential

Optimize DB Usage (Cont.)

• Look for unexpected fetching
– Use EOAdaptorDebugEnabled to monitor activity
– Beware of excess faulting
– Do not fetch data for pop-ups, browsers, etc. in

the components; Manage such reference data
at the application level and filter as needed for
component display

21 6/28/00Apple Confidential

Optimize DB Usage (Cont.)

• Look for unexpected fetching
– Avoid refaulting shared reference data into

session’s editing context
– Manage movement of objects between editing

contexts—use localInstanceOfObject

22 6/28/00Apple Confidential

Optimize DB Usage (Cont.)

• Optimize eomodels
– Simplify object model
– Avoid deep inheritance hierarchies

(and deep fetches!)
– Build simplified read only entities (based

on business object tables) with flattened
attributes to support user queries

23 6/28/00Apple Confidential

Optimize DB Usage (Cont.)

• Optimize eomodels
– Build views in DB for queries (DB-sidflattening!)
– Use batch faulting
– Use prefetching
– Watch for excess back pointers

24 6/28/00Apple Confidential

• Optimize queries
– Create indices
– Use “explain plan” to make sure indices

are being used
– Check ratio of cache hit to disk access

for common queries
– Make sure DB is tuned to use available processors
– Make sure DB is tuned to use available RAM

Optimize DB Usage (Cont.)

25 6/28/00Apple Confidential

• Look at the generated SQL
– Does it suggest additional indexes?
– Can it be “hand” optimized? Put tuned

SQL in the eomodel. (This is a last resort if
EOF insists on generating sub-optimal SQL)

– Use stored procedures

Optimize DB Usage (Cont.)

26 6/28/00Apple Confidential

Optimize Components

• Simplify component nesting
• Define your own (compiled) subclass of

WOComponent, put common functionality
there and make components inherit from that
instead of WOComponent

• Consider caching pages or using new
“stateless” components

• Make static content static!

27 6/28/00Apple Confidential

Refactor Software

• Compile anything that does serious calculations
• Simplify Application and Session objects,

move functionality to singleton “manager”
classes (such as a configuration manager
or a cached object manager)

28 6/28/00Apple Confidential

Is Your WebServer Doing Its Share?

• Tune configuration
• Use mixture of static (served by web server)

and dynamic (served by app server) content
• Offload all serving of content that you can

(images, files, multimedia)

29 6/28/00Apple Confidential

Optimize for Fast Browser Display

• Check total size of generated pages
– Smaller pages display faster
– Batch displays of long sets of data
– Generate short URLS (i.e., /images vs. /I)

• Do better things with images!
– Smaller images
– Common image names
– Use less images

30 6/28/00Apple Confidential

Optimize for Fast
Browser Display (Cont.)

• Improve the structure of your HTML
– Use HTML code checker

(such as WebLint) on generated pages
– Simplify table structures
– Watch for nesting problems

(especially nested forms! Don’t work!)

31 6/28/00Apple Confidential

Optimize for Fast
Browser Display (Cont.)
– Watch for overlap problems

 (<form><table>...</form></table>, etc.)

– Look at the generated HTML—some problems
are within a single component template, others
span components

32 6/28/00Apple Confidential

For More Information

http://www.apple.com/webobjects

Visit the WebObjects lab downstairs!
Everyday from 11:00 a.m.–2:00 p.m.

Try out your WebObjects 4.5 Evaluation CD!

33 6/28/00Apple Confidential

Who to Contact

Toni Trujillo Vian
Director, WebObjects Engineering
wofeedback@group.apple.com

Ernest Prabhakar
Product Line Manager, WebObjects
webobjects@group.apple.com

