Session 414

WebObjects Performance Metrics

Eric Bailey Stan Jirman
Internet Services, Apple WebODbjects Tools, Apple

Introduction

= Use tools and techniques to measure your
application’s performance characteristics

= Discover factors that influence a WebObjects
application’s performance

= Pinpoint the critical code In your application
that needs attention

The Big Picture
HTTP Request _l I—> HTTP Response

HTTP Server

APIl-based WO Adaptor

} t

Request Handling Response Generation

Action Invocation
“Business Logic”

-

Database

Web Server
Performance

WebObjects
Performance

Database
Performance

HTTP Request j I—> HTTP Response

B HTTP Server

APl-based WO Adaptor

} t

Request Handling Response Generation

Action Invocation
“Business Logic”

Nl

Database

HTTP Request HTTP Response I/O, Network
1 performance, latency

HTTP Server

APl-based WO Adaptor

I/O, Network
l T performance, latency

Request Handling Response Generation

Action Invocation
“Business Logic”

I/O, Network
performance, latency

Database

WOStats

« Mech
high-

* (500C

anism bullt in to WebObjects for reporting
evel statistics about an application

of wr

starting point to get a general sense
ether your application is fast or slow

WOStats

= Measures transaction time at a high level

HTTP Request j I—> HTTP Response

Start timer - HTTP Server

Request Handling Response Generation

Action Invocation
“Business Logic”

P-4

Database

WOStats

http://localhost:1116/cgi-bin/WebObjects/WOInfoCenter.woa/wa/WO Stats

-:E';fj:' http://revolver.apple.com:1116/..woa./wa. / WO5tats

© A B = = 4

Larger

Statistics For WOInfoCenter On Host revolver

[Refresh Page |

Funming time 7 days, 1 hours, 31 mmutes, 45

ﬂ Internet zone

WOStats

-:E';fj:' http://revolver.apple.com:1116/..woa./wa / WO5stats

S a 2

Component Action Statistics

[I's W J'i'.;urg oz
"7_ 0102 ’m — =
’7

0.018 | 0.018

0154 [154
[1306 [7.127

ﬂ Internet zone

Event Logging Introduction

= New In WebO
= More fine grai
lows you to

njects 4.5

ned t

Ide

Nt

nan WOStatistics

Ify the bottlenecks of your app

Jilt into any WO 4.5 App

What You'll Learn

IS an event

lIt-In events

Ing event logging

0g analysis

Ining custom events for your own needs

Prerequisites

= WO 4.5 App on any platform
= Simple Web Browser

= No preparations necessary, just connect
to your app when ready/when it looks slow

Example Call Stack

Main Page

¢ Nested Component

I DB fetch

Efficient

= No special framework/library needs to be linked
event logging Is programmed in-line

cost Is at analysis time, not collection time

= Memory overflow protection

Performance Numbers

= 300MHz G3 can log over 300,000 events per second
= No disk I/0

= Pure C/public static Java methods for maximum
nerformance

Efficient—Some More Numbers

= Custom event memory manager and
garbage collector

= Worst case scenarlio:

— You forget the app running with logging enabled...
~—4MB memory wasted per thread (settable)

— Memory will be recycled once this high water mark
IS reached

= User defaults for tunable parameters

Robustness

= Graceful handling of exceptions in your code
(no memory or performance loss)

= Self-diagnosis: logging turns itself off automatically
In a number of crisis situations (settable)

Completeness—Built-in Events

= Dozens of events for all common operations
are built in, such as

— EOAdaptor access

— EOEditingContext

— WOComponents and WOPages
— WO Bindings

User Interface

The Ul Is accessed through a web browser

Two Direct Action web pages:
— WOEventSetup
— WOEventDisplay

Event Groups

= Built-In events collected into logical, atomic groups

e Example:

— EODatabaseContext Event (group)
= Objects with fetch specification (event)
= Save changes (event)

Event Setup Page

= WOEventSetup Direct Action

= Allows you to t

by Event Group

= All Event Grou

urn on/off event logging

0s applicable for your app

are shown, anc

only those

Event Display Page

= WOEventDisplay Direct Action

= Allows you to view the collected data in five
different ways, depending on your needs

Example Call Stack—Case 1

¢+ Main Page

¢ Nested Component

I DB fetch

Example Call Stack—Case 2

¢+ Main Page

¢ Nested Component

Aggregated View of Both Cases

Main page 70 ms 2
Nested Component 60 ms 2

DB fetch 50 ms 1

View By Page, Component

= Easiest, most common starting point

= Root level shows all pages touched during
e run

nild level shows individual components of
at page

= Each sublevel shows sub-components, and so on

View By Page

Root level shows all pages

glance,
You stil

Useful If you
without seel

want to flatten all components,
ng a hierarchy (more Info at one

out more confusing)

Call

“drill down” Iinto subevents

Unsorted View

= Shows events In an aggregated way, 1.e., identical
events are merged into one and counted

= Shows events nested like a call graph

= “Drill Down” to nested events by clicking
on hyperlinks

ThinkMovies Demo

Customization

= Events are very general

= They are everywhere Iin the EO and WO frameworks
where It makes sense

= You can customize them for your custom classes

Using WOEvent for Your Code

public void awake() {
super.awake();
WOEvent event = null;
If (IsEventLoggingEnabled()) {
event = (WOEvent)

EOEventCenter.newEventOfClass (
WOEvent.class, comment);
EOEventCenter.markStartOfEvent (event, “awake”);
}
// your profiled code here
If (event != null)
EOEventCenter.markEndOfEvent (event);

Alternative: Subclass

= All you need Is a custom event class
= Example: MyComponentEvent

public class MyComponentEvent extends WOEvent {
public MyComponentEvent () {
super();
}
}

Required Description File

= MyComponentEvent.description

{
EOEventGroupName =" MyComponent Event”;
doThis =*“QOperation #1”;
doThat = “Another operation to be logged”;

}

= Key/Value name mapping
= Only group name mandatory
= Place In project Resources suitcase

Playback/Recording

= Automated load testing built into WebObjects

= Record HTTP request/response interactions
with your WebObjects application

= Playback recorded session repeatedly to
generate load

What It’s Intended For...

= (Good starting point for prototyping load

= “Get the feel” of your application’s
performance In a deployment scenario

= Free—comes with the product

= Powerful enough to prove stability of
The Apple Store—a high-volume Internet site

Limitations

Not a coverage tool

Not for functional testing

Not scriptable

= Only compares page lengths;
does not do HTML matching

= Managing a high volume of virtual
clients with Playback can be difficult

Recording

= To record, launch app with special argument;

ThinkMovies -WORecordingPath /tmp

prowser as client and click-through
ication’s interface WebObjects will write
ests and response to path specified above

Playback

= Playback the recorded interactions

= Two approaches:
— Command-line interface
— PlaybackManager

Command-Line Interface

Playback :

frnmewoﬁkftlnssesfhwt.jqr" com.apple.client.playback .Flagyback =r HelloWorld.rec
-diff 58

START IMG PLAYBARCK TOO
URL base is http://localhost:88/cqi-binMeblbjects
Flaying recording indefinitely.
Flaying without sleeping.
Diff'ing received and recorded responses to a + or = 58% match.
Hill not save failures.
Loaded 8808-request{354)
Loaded 8888-response{1238)
Loaded 88681-request{(S689)
Loaded 8881-response{?89)
-——= Beginning Mew Plauback (Hed May 17 12:31:18 POT 2888) ———-
B: Request ® - ©.827 sec. Average 8.0 Butes 475 / 2087 . PASSED.
1! Request 8.8878 sec. Average B.827 Bytes 475 / 436 . PRSSED.
2% FRequest B.9068 sec. Average B8.817 Buytes 475 / 287 . PASSED.
3! Request 0.8858 sec. Average B.813 Byutes 475 / 436 . PASSED.
4: Fequest B.0040 sec. Average 8.0912 Butes 475 / 887 . PRASSED.
5! Request 0.88508 sec., Average B.81 Butes 475 / 436 . PASSED.
B2 Request 0.0840 sec. Average 8.0890 Buytes 475 / 887 . PASSED.
7: Request @.8848 sec. Average 0.882@ Butes 475 / 436 . PASSED.
2! Request 0.9850 sec. Average B.0080 Bytes 475 / 287 . PASSED.
9! Request 8.8058 sec. Average B.8878 Buytes 475 / 436 . PASSED.
18: Request @ - 8.8858 sec. Average 8.8878 Butes 475 / 887 . PASSED.

Third-Party Tools

= Better for coverage
— Scriptable for automating coverage

= Better for regression testing

— More flexib

e Automated s

€ Ies

nonse verification

tem

onitoring

Factors That Influence Performance

« Hardware
— CPU
— RAM

= Database
— EOF
— Schema and server

= Singlethreaded vs. Multithreaded
= Factors In the larger deployment scenario

For More Information

http://www.apple.com/webobjects

Visit the WebODbjects lab downstairs!
Everyday from 11:00 a.m.—2:00 p.m.

Try out your WebObjects 4.5 Evaluation CD!

WebObjects Community BOF
Wed., 6:30 p.m.—8:00 p.m.

Session 414

g Image Preview

[Cancel ._ Save __

Who to Contact

Toni Trujillo Vian

Director, WebObjects Engineering
wofeedback@group.apple.com

Ernest Prabhakar

Product Line Manager, WebObjects
webobjects@group.apple.com

WWDC

Worldwide Developers Conference 2000

Think difterent.

